DOI QR코드

DOI QR Code

CO2 Conversion by Controlling the Reduction Temperature of Cobalt Catalyst

코발트 촉매의 환원온도 조절을 통한 CO2 전환 공정

  • Heuntae Jo (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Jaehoon Kim (School of Mechanical Engineering, Sungkyunkwan University)
  • 조흔태 (성균관대학교 기계공학부) ;
  • 김재훈 (성균관대학교 기계공학부)
  • Received : 2024.06.01
  • Accepted : 2024.07.16
  • Published : 2024.09.30

Abstract

This study investigates the impact of reduction temperature on the structure and performance of cobalt-manganese (CM) based catalysts in the direct hydrogenation reaction of carbon dioxide (CO2). It was observed that at a reduction temperature of 350 ℃, these catalysts could successfully facilitate the conversion of CO2 into long-chain hydrocarbons. This efficiency is attributed to the optimal conditions provided by the core-shell structure of the catalysts, which effectively catalyzes both the reverse water-gas shift (RWGS) and Fischer-Tropsch (FT) reactions. However, as the reduction temperature increased to 600 ℃, the effectiveness of the reaction process was hindered, and there was a shift in selectivity towards methane. This shift is due to the excessive reduction of the catalyst's outer shell, which reduces the number of RWGS sites and subsequently suppresses the production of CO. These findings highlight the importance of carefully controlling the reduction temperature in the design and optimization of cobalt-based catalysts. Maintaining a balance between the RWGS and FT reactions is crucial. This emphasizes that the reduction temperature is a key factor in efficiently generating long-chain hydrocarbons from CO2.

이 연구는 환원 온도 변화가 코발트-망간(CM) 기반 촉매의 구조와 성능에 미치는 영향을 조사하며, 이산화탄소(CO2)의 직접 수소화 반응에서 촉매의 역할에 중점을 두고 있다. CM 촉매는 350 ℃의 환원 온도에서 CO2를 장쇄 탄화수소로 성공적으로 전환하는 것으로 관찰되었다. 이러한 효율은 촉매의 코어-쉘 구조가 제공하는 최적의 조건에 기인하며, 이는 역수성가스전환(Reverse Water-Gas Shift, RWGS)과 피셔-트롭쉬(Fischer-Tropsch, FT) 반응을 모두 효과적으로 반응한다. 그러나 환원 온도가 섭씨 600 ℃까지 상승하면 이러한 효과적인 반응 과정이 방해받아 메탄으로 선택성이 전환된다. 이러한 변화는 고온에서 촉매의 표면이 과도하게 환원되어 RWGS 부위가 감소하고 결과적으로 CO 생성이 억제되기 때문에 발생한다. 이러한 연구 결과는 코발트 기반 촉매의 설계 및 최적화에서 환원 온도를 제어하는 것이 중요하다는 점을 강조하며 환원 온도조절을 통한 RWGS와 FT 반응 간의 균형 잡힌 상호 작용을 유지하는 것이 중요하다.

Keywords

Acknowledgement

This study was funded by the National Research Foundation of Korea (NRF) grant funded by the MSIT, South Korea (No. 2022R1A6A3A01087079).

References

  1. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., and Medina-Elizade, M., "Global Temperature Change," Proc. Natl. Acad Sci., 103, 14288-14293 (2006).
  2. Hoegh-Guldberg, O. and Bruno, J. F., "The Impact of Climate Change on the World's Marine Ecosystems," Science, 328, 1523-1528 (2010).
  3. Porosoff, M. D., Yan, B., and Chen, J. G., "Catalytic Reduction of CO2 by H2 for Synthesis of CO, Methanol and Hydrocarbons: Challenges and Opportunities," Energy Environ. Sci., 9, 62-73 (2016).
  4. Chu, S. and Majumdar, A., "Opportunities and Challenges for a Sustainable Energy Future," Nature, 488, 294-303 (2012).
  5. Qiao, J., Liu, Y., Hong, F., and Zhang, J., "A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels," Chem. Soc. Rev., 43, 631-675 (2014).
  6. Lim, R. J., Xie, M., Sk, M. A., Lee, J.-M., Fisher, A., Wang, X., and Lim, K. H., "A Review on the Electrochemical Reduction of CO2 in Fuel Cells, Metal Electrodes and Molecular Catalysts," Catal. Today, 233, 169-180 (2014).
  7. Jang, Y. J., Jang, J.-W., Lee, J., Kim, J. H., Kumagai, H., Lee, J., Minegishi, T., Kubota, J., Domen, K., and Lee, J. S., "Selective CO Production by Au Coupled ZnTe/ZnO in the Photoelectrochemical CO2 Reduction System," Energy Environ. Sci., 8, 3597-3604 (2015).
  8. Chang, X., Wang, T., and Gong, J., "CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts," Energy Environ. Sci., 9, 2177-2196 (2016).
  9. Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., and Song, C., "A Short Review of Recent Advances in CO2 Hydrogenation to Hydrocarbons over Heterogeneous Catalysts," RSC. Adv., 8, 7651-7669 (2018).
  10. Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Wei, W., and Sun, Y., "A Review of the Catalytic Hydrogenation of Carbon Dioxide into Value-Added Hydrocarbons," Catal. Sci. Technol., 7, 4580-4598 (2017).
  11. Yoon, W., Lee, J., and Kim, J., "Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods," Clean Technol., 30(1), 62-67 (2024).
  12. Johnson, G. R., Werner, S., and Bell, A. T., "An Investigation into the Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer-Tropsch Synthesis: Evidence for Enhanced CO Adsorption and Dissociation," ACS Catal., 5, 5888-5903 (2015).
  13. Jo, H., Khan, M. K., Irshad, M., Arshad, M. W., Kim, S. K., and Kim, J., "Unraveling the Role of Cobalt in the Direct Conversion of CO2 to High-Yield Liquid Fuels and Lube Base Oil," Appl. Catal. B, 305, 121041 (2022).
  14. Visconti, C. G., Lietti, L., Tronconi, E., Forzatti, P., Zennaro, R., and Finocchio, E., "Fischer-Tropsch Synthesis on a Co/Al2O3 Catalyst with CO2 Containing Syngas," Appl. Catal. A, 355, 61-68 (2009).
  15. Dorner, R. W., Hardy, D. R., Williams, F. W., Davis, B. H., and Willauer, H. D., "Influence of Gas Feed Composition and Pressure on the Catalytic Conversion of CO2 to Hydrocarbons Using a Traditional Cobalt-Based Fischer-Tropsch Catalyst," Energy Fuel, 23, 4190-4195 (2009).
  16. Gnanamani, M. K., Shafer, W. D., Sparks, D. E., and Davis, B. H., "Fischer-Tropsch Synthesis: Effect of CO2 Containing Syngas over Pt Promoted Co/γ-Al2O3 and K-promoted Fe Catalysts," Catal. Commun., 12, 936-939 (2011).
  17. Owen, R. E., O'Byrne, J. P., Mattia, D., Plucinski, P., Pascu, S. I., and Jones, M. D., "Cobalt Catalysts for the Conversion of CO2 to Light Hydrocarbons at Atmospheric Pressure," Chem. Commun., 49, 11683-11685 (2013).
  18. Owen, R. E., Plucinski, P., Mattia, D., Torrente-Murciano, L., Ting, V. P., and Jones, M. D., "Effect of Support of Co-Na-Mo Catalysts on the Direct Conversion of CO2 to Hydrocarbons," J. CO2 Util, 16, 97-103 (2016).
  19. Shi, Z., Yang, H., Gao, P., Li, X., Zhong, L., Wang, H., Liu, H., Wei, W., and Sun, Y., "Direct Conversion of CO2 to Long-Chain Hydrocarbon Fuels over K-promoted CoCu/TiO2 Catalysts," Catal. Today, 311, 65-73 (2018).
  20. Khan, M. K., Butolia, P., Jo, H., Irshad, M., Han, D., Nam, K.-W., and Kim, J., "Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over Fe-Amorphous AlOx Bifunctional Catalysts," ACS Catal., 10, 10325-10338 (2020).
  21. Susanti, R. F., Dianningrum, L. W., Yum, T., Kim, Y., Lee, B. G., and Kim, J., "High-Yield Hydrogen Production from Glucose by Supercritical Water Gasification Without Added Catalyst," Int. J. Hydrogen Energy, 37, 11677-11690 (2012).
  22. Khan, M. K., Insyani, R., Lee, J., Yi, M., Lee, J. W., and Kim, J., "A Non-Catalytic, Supercritical Methanol Route for Effective Deacidification of Naphthenic Acids," Fuel, 182, 650-659 (2016).