DOI QR코드

DOI QR Code

다양한 성형압력조건에서 제조된 입상 세라믹필터의 집진성능

Filtration performance of granular ceramic filters produced at various molding pressures

  • 최현진 (한국환경연구원 환경평가본부) ;
  • 김한빈 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 이명화 (강원대학교 미세먼지통합관리학과)
  • Hyun-Jin Choi (Environmental Assessment Group, Korea Environment Institute) ;
  • Han-Bin Kim (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology) ;
  • Myong-Hwa Lee (Department of Integrated Particulate Matter Management, Kangwon National University)
  • 투고 : 2024.05.28
  • 심사 : 2024.06.11
  • 발행 : 2024.06.30

초록

A silicon carbide (SiC) ceramic filter is an effective component for hot flue gas cleaning because of its high collection efficiency, high thermal shock resistance, and excellent mechanical strength. The effect of molding pressure in the production of SiC granular ceramic filters, on the mechanical strength and filtration performance, was investigated in this work. It was found that the ceramic filters produced at molding pressures less than 20 MPa have low mechanical strength and that this result was caused by weak physical interaction among the ceramic powders due to defects and cracks. On the other hand, the filter quality factor(qF), which represents filtration performance of filter media, decreased with increasing the molding pressure due to the drastic increase in pressure drop. Ceramic filter performance factor(qFM), which is the manipulation of maximum mechanical strength and qF, was introduced to consider both mechanical strength and filtration performance in this study. As a result, molding pressure of 30 MPa was desirable to produce a SiC granular ceramic filter based on qFM.

키워드

과제정보

이 성과는 정부(환경부)의 재원으로, 한국환경산업기술원의 미세먼지관리특성화대학원사업과 강원권미세먼지연구관리센터의 지원을 받아 수행되었습니다.

참고문헌

  1. Allen, M.D., and Raabe, O.G. (1985) Slip correction measurement of spherical solid aerosol particles in an improved millikan apparatus, Aerosol Sci. Technol., 4, 269-286. https://doi.org/10.1080/02786828508959055
  2. Chi, H., Ji, Z.,Sun, D., and Cui, L. (2009) Experimental investigation of dust deposit within ceramic filter medium during filtration-cleaning cycles, Chin. J. Chem. Eng., 17, 219-225. https://doi.org/10.1016/S1004-9541(08)60197-4
  3. Choi, H.-J., Kim, J.-U., Kim, S. H., and Lee, M.-H. (2014) Preparation of granular ceramic filter and prediction of its collection efficiency, Aerosol Sci. Technol., 48, 1070-1079. https://doi.org/10.1080/02786826.2014.957755
  4. Choi, H.-J., Kim, J.-U., Kim, H.-S., Kim, S.H., and Lee, M.-H. (2015) Effect of sintering temperature in preparation of granular ceramic filter, Ceram. Int., 41, 10030-10037. https://doi.org/10.1016/j.ceramint.2015.04.090
  5. De Freitas, N. L., Goncalves, J. A. S., Innocentini, M.D.M., and Coury, J. R. (2006) Development of a double-layered ceramic filter for aerosol filtration at high temperature: The filter collection efficiency, J. Hazard. Mater., 136, 747-756. https://doi.org/10.1016/j.jhazmat.2006.01.012
  6. D'Ottavio, T., and Goren, S.L. (1982) Aerosol capture in granular beds in the impaction dominated regime, Aerosol Sci. Technol., 2, 91-108. https://doi.org/10.1080/02786828308958616
  7. brahimpour, O., Esmaeili, B., Griffon, L., Chaouki, J., and Dubois, C. (2014) Novel fabrication route for porous silicon carbide ceramics through the combination of in situ polymerization and reaction bonding techniques, J. Appl. Polym. Sci., 131, 40425. https://doi.org/10.1002/app.40425
  8. Endo, Y., Chen, D.-R., and Pui, D.Y.H. (2002) Collection efficiency of sintered ceramic filters made of submicron spheres, Filtr. Sep., 39, 42-47. https://doi.org/10.1016/S0015-1882(02)80107-0
  9. Gal, E., Tardos, G. and Pfeffer, R. (1985) A study of inertial effects in granular bed filtration, AIChE J., 31, 1093-1104. https://doi.org/10.1002/aic.690310707
  10. Han, Y.S., Li, J.B., and Chen, Y.J. (2003) Fabrication of biomodal porous alumina ceramics, Mater. Res. Bull., 38, 373-379. https://doi.org/10.1016/S0025-5408(02)01026-7
  11. Hata, M., Furuuchi, M., Kanaoka, C., Kurose, R., and Makino, H. (2003) Observation of dust release behavior from ceramic filter element, Adv. Powder Technol., 14, 719-734. https://doi.org/10.1163/15685520360732007
  12. Jung, Y., Walata, S.A., and Tien, C. (1989) Experimental determination of the initial collection efficiency of granular beds in the inertial-impaction-dominated region, Aerosol Sci. Technol., 11, 168-182. https://doi.org/10.1080/02786828908959309
  13. Kanaoka, C., and Amornkitbamrung, M. (2001) Effect of filter permeability on the release of captured dust from a rigid ceramic filter surface, Powder Technol., 118, 113-120. https://doi.org/10.1016/S0032-5910(01)00301-1
  14. Kuo, Y.-M., Huang, S.-H., Lin, W.-Y., Hsiao, M.-F., and Chen, C.-C. (2010) Filtration and loading characteristics of granular bed filters, J. Aerosol Sci., 41, 223-229. https://doi.org/10.1016/j.jaerosci.2009.09.011
  15. Li, J., Lin, H., and Li, J. (2011) Factors that influence the flexural strength of SiC-based porous ceramics used for hot gas filter support., European Ceram. Soc., 31, 825-831. https://doi.org/10.1016/j.jeurceramsoc.2010.11.033
  16. Liu, S., Zeng, Y.-P., and Jiang, D. (2009) Fabrication and characterization of cordierite-bonded porous SiC ceramic, Ceram. Int., 35, 597-602. https://doi.org/10.1016/j.ceramint.2008.01.025
  17. Omori, Y., Choi, H.-J., Mukai, Y., Fujimoto, T., Tamadate, T, Seto, T., Otani, Y., and Kumita, M. (2016) Experimental evidence of a strong image force between highly charged electrosprayed molecular ions and a metal screen, Aerosol Air Qual. Res., 16, 3055-3062 https://doi.org/10.4209/aaqr.2016.04.0147
  18. Paretsky, L., Theodore, L., Pfeffer, R., and Arthur, M.S. (197) Panel bed filters for simultaneous removal of fly ash and sulfur dioxide: II. Filtration of dilute aerosols by sand beds, J. Air Pollut. Control Assoc., 21, 204-209. https://doi.org/10.1080/00022470.1971.10469520
  19. Pastila, P., Helanti, V., Nikkila, A.-P., and Mantyla, T. (2001) Environmental effects on microstructure and strength of SiC-based hot gas filters, J. European Ceram. Soc., 21, 1261-1268. https://doi.org/10.1016/S0955-2219(00)00326-5
  20. She, J., Yang, J.-F., Kondo, N., Ohji, T., Kanzaki, S., and Deng, Z.-Y. (2002) High-Strength porous silicon carbide ceramics by an oxidation-bonding technique, J. Am. Ceram. Soc., 85, 2852-2854. https://doi.org/10.1111/j.1151-2916.2002.tb00542.x
  21. She, J. H., Ohji, T., and Kanzaki, S. (2004) Oxidation bonding of porous silicon carbide ceramics with synergistic performance, J. European Ceram. Soc., 24, 331-334. https://doi.org/10.1016/S0955-2219(03)00225-5
  22. Simeone, E., Nacken, M., Haag, W., Heidenreich, S., and De Jong, W. (2011) Filtration performance at high temperatures and analysis of ceramic filter elements during biomass gasification, Biomass Bioenerg., 35, S87-S104. https://doi.org/10.1016/j.biombioe.2011.04.036
  23. Tien, C. in "Granular filtration of aerosols and hydrosols" (Butterworths-Heinemann, 1989).
  24. Wen, Z.-H., Han, Y.-S., Liang, L., and Li, J.-B. (2008) Preparation of porous ceramics with controllable pore sized in an easy and low-cost way, Materials Characterization, 59, 1335-1338. https://doi.org/10.1016/j.matchar.2007.11.010
  25. Zhong, Z., Xing, W., Li, X., and Zhang, F. (2013) Removal of organic aerosols from furnace flue gas by ceramic filters, Ind. Eng. Chem. Res., 52, 5455-5461. https://doi.org/10.1021/ie400046z