DOI QR코드

DOI QR Code

Application of laser induced breakdown spectroscopy to detect elements of carbonaceous aerosols

레이저 분광 기법을 활용한 탄소성 에어로졸 원소 검출 연구

  • Gibaek Kim (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Haebum Lee (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Hyunok Maeng (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Gangnam Cho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Joonwoo Kim (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Kihong Park (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
  • 김기백 (광주과학기술원 지구환경공학부) ;
  • 이해범 (광주과학기술원 지구환경공학부) ;
  • 맹현옥 (광주과학기술원 지구환경공학부) ;
  • 조강남 (광주과학기술원 지구환경공학부) ;
  • 김준우 (광주과학기술원 지구환경공학부) ;
  • 박기홍 (광주과학기술원 지구환경공학부)
  • Received : 2024.03.05
  • Accepted : 2024.03.30
  • Published : 2024.06.30

Abstract

This study demonstrated the applicability of laser-induced breakdown spectroscopy (LIBS) to determine elements (C, H, and O) and their ratios of aerosols, enabling to discriminate various types of carbonaceous aerosols. The elements of carbonaceous aerosols which were collected on Ag membrane filter under Argon environment were successfully detected by using the LIBS. The LIBS responses (emission lines of C, H, and O in the LIBS spectra) to increasing carbonaceous aerosols were evaluated. The sensitivity of emission lines varied with different elements. Limit of detection (LOD) values for C, H, and O elements for aerosols collected on the filter were found to be 3.17 ㎍, 0.15 ㎍, and 2.25 ㎍, respectively. The spectral data (elemental ratios) obtained using LIBS were in reasonable agreements with the nominal atomic ratios (H/C and O/C) of various carbonaceous aerosols. Further, LIBS spectra were investigated by using principal component analysis (PCA) method to identify types of various carbonaceous aerosols. Our results suggested the possibility of the LIBS technique to detect and/or to discriminate various carbonaceous aerosols and to determine their elemental ratios (H/C and O/C).

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(NRF-2019R1A2C3007202, NRF-2019M1A2A2103956, NRF-2021M1A5A1065667, NRF-RS-2023-00257087)의 지원 및 삼성종합기술원의 지원을 받아 수행된 연구임.

References

  1. Aguirre, M., Legnaioli, S., Almodovar, F., Hidalgo, M., Palleschi, V., & Canals, A. (2013). Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid-liquid microextraction. Spectrochimica Acta Part B: Atomic Spectroscopy, 79, 88-93. https://doi.org/10.1016/j.sab.2012.11.011
  2. Aiken, A. C., DeCarlo, P. F., & Jimenez, J. L. (2007). Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Analytical Chemistry, 79(21), 8350-8358. https://doi.org/10.1021/ac071150w
  3. Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of medical toxicology, 8, 166-175. https://10.1007/s13181-011-0203-1
  4. Andreae, M., & Rosenfeld, D. (2008). Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1-2), 13-41. https://doi.org/10.1016/j.earscirev.2008.03.001
  5. Appel, B., Tokiwa, Y., Hsu, J., Kothny, E., & Hahn, E. (1985). Visibility as related to atmospheric aerosol constituents. Atmospheric Environment (1967), 19(9), 1525-1534. https://doi.org/10.1016/0004-6981(85)90290-2
  6. Begnoche, B. C., & Risby, T. (1975). Determination of metals in atmospheric particulates using low-volume sampling and flameless atomic absorption spectrometry. Analytical Chemistry, 47(7), 1041-1045. https://doi.org/10.1021/ac60357a006
  7. Boue-Bigne, F. (2016). Laser-induced breakdown spectroscopy and multivariate statistics for the rapid identification of oxide inclusions in steel products. Spectrochimica Acta Part B: Atomic Spectroscopy, 119, 25-35. https://doi.org/10.1016/j.sab.2016.02.018
  8. Broekaert, J. A., Wopenka, B., & Puxbaum, H. (1982). Inductively coupled plasma optical emission spectrometry for the analysis of aerosol samples collected by cascade impactors. Analytical Chemistry, 54(13), 2174-2179. https://doi.org/10.1021/ac00250a010
  9. Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., & Worsnop, D. R. (2015). Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 15(1), 253-272. https://doi.org/10.5194/acp-15-253-2015
  10. Cao, J., Lee, S., Ho, K., Zhang, X., Zou, S., Fung, K., Chow, J. C., & Watson, J. G. (2003). Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmospheric Environment, 37(11), 1451-1460. https://doi.org/10.1016/S1352-2310(02)01002-6
  11. El Haddad, J., Bruyere, D., Ismael, A., Gallou, G., Laperche, V., Michel, K., Canioni, L., & Bousquet, B. (2014). Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 97, 57-64. https://doi.org/10.1016/j.sab.2014.04.014
  12. Gounder, J. D., Kutne, P., & Meier, W. (2012). Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures. Spectrochimica Acta Part B: Atomic Spectroscopy, 74, 66-73. https://doi.org/10.1016/j.sab.2012.06.018
  13. Harmon, R. S., Russo, R. E., & Hark, R. R. (2013). Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochimica Acta Part B: Atomic Spectroscopy, 87, 11-26. https://doi.org/10.1016/j.sab.2013.05.017
  14. Jalkanen, L. M., & Hasanen, E. K. (1996). Simple method for the dissolution of atmospheric aerosol samples for analysis by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 11(5), 365-369. https://doi.org/10.1039/JA9961100365
  15. Kim, G., Kim, K., Maeng, H., Lee, H., & Park, K. (2019). Development of aerosol-LIBS (laser induced breakdown spectroscopy) for real-time monitoring of process-induced particles. Aerosol and Air Quality Research, 19(3), 455-460. https://doi.org/10.4209/aaqr.2018.08.0312
  16. Kim, G., Kwak, J., Kim, K.-R., Lee, H., Kim, K.-W., Yang, H., & Park, K. (2013). Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS). Journal of hazardous materials, 263, 754-760. https://doi.org/10.1016/j.jhazmat.2013.10.041
  17. Kwak, J.-H., Kim, G., Kim, Y.-J., & Park, K. (2012). Determination of heavy metal distribution in PM10 during Asian dust and local pollution events using laser induced breakdown spectroscopy (LIBS). Aerosol Science and Technology, 46(10), 1079-1089. https://doi.org/10.1080/02786826.2012.692492
  18. Lasheras, R., Bello-Galvez, C., & Anzano, J. (2013). Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard. Spectrochimica Acta Part B: Atomic Spectroscopy, 82, 65-70. https://doi.org/10.1016/j.sab.2013.01.005
  19. Lee, H., Maeng, H., Kim, K., Kim, G., & Park, K. (2018). Application of laser-induced breakdown spectroscopy for real-time detection of contamination particles during the manufacturing process. Appl Opt, 57(12), 3288-3292. https://doi.org/10.1364/AO.57.003288
  20. Li, X., Wang, S., Duan, L., Hao, J., & Nie, Y. (2009). Carbonaceous aerosol emissions from household biofuel combustion in China. Environmental Science & Technology, 43(15), 6076-6081.
  21. Maeng, H., Chae, H., Lee, H., Kim, G., Lee, H., Kim, K., Kwak, J., Cho, G., & Park, K. (2017). Development of laser-induced breakdown spectroscopy (LIBS) with timed ablation to improve detection efficiency. Aerosol Science and Technology, 51(9), 1009-1015. https://doi.org/10.1080/02786826.2017.1344352
  22. Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science, 297(5590), 2250-2253. https://doi.org/10.1126/science.1075159
  23. Ng, N., Canagaratna, M., Jimenez, J., Chhabra, P., Seinfeld, J., & Worsnop, D. (2011). Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 11(13), 6465-6474. https://doi.org/10.5194/acp-11-6465-2011
  24. Park, K., Cho, G., & Kwak, J.-h. (2009). Development of an aerosol focusing-laser induced breakdown spectroscopy (aerosol focusing-LIBS) for determination of fine and ultrafine metal aerosols. Aerosol Science and Technology, 43(5), 375-386. https://doi.org/10.1080/02786820802662947
  25. Park, R. J., Jacob, D. J., Chin, M., & Martin, R. V. (2003). Sources of carbonaceous aerosols over the United States and implications for natural visibility. Journal of Geophysical Research: Atmospheres, 108(D12). https://doi.org/10.1029/2002JD003190
  26. Poschl, U. (2005). Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46), 7520-7540. https://doi.org/10.1002/anie.200501122
  27. Ramanathan, V., Crutzen, P. J., Kiehl, J., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119-2124. https://doi.org/10.1126/science.1064034
  28. Rauschenbach, I., Lazic, V., Pavlov, S., Hubers, H.-W., & Jessberger, E. (2008). Laser induced breakdown spectroscopy on soils and rocks: Influence of the sample temperature, moisture and roughness. Spectrochimica Acta Part B: Atomic Spectroscopy, 63(10), 1205-1215. https://doi.org/10.1016/j.sab.2008.08.006
  29. Sainani, K. L. (2014). Introduction to principal components analysis. PM&R, 6(3), 275-278. https://doi.org/10.1016/j.pmrj.2014.02.001
  30. Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. 3rd Ed., New Jersey, John Wiley & Sons.
  31. Simoneit, B. R., Kobayashi, M., Mochida, M., Kawamura, K., & Huebert, B. J. (2004). Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds. Journal of Geophysical Research: Atmospheres, 109(D19). https://doi.org/10.1029/2004JD004565
  32. Tremper, A. H., Font, A., Priestman, M., Hamad, S. H., Chung, T.-C., Pribadi, A., Brown, R. J., Goddard, S. L., Grassineau, N., & Petterson, K. (2018). Field and laboratory evaluation of a high time resolution x-ray fluorescence instrument for determining the elemental composition of ambient aerosols. Atmospheric Measurement Techniques, 11(6), 3541-3557. https://doi.org/10.5194/amt-11-3541-2018
  33. Winefordner, J. D., Gornushkin, I. B., Correll, T., Gibb, E., Smith, B. W., & Omenetto, N. (2004). Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. Journal of Analytical Atomic Spectrometry, 19(9), 1061-1083. https://doi.org/10.1039/B400355C