Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2021R1A2B5B01002577).
References
- ABAQUS, (2014), ABAQUS. (2014). ABAQUS/Standard, User's Guide, Version 6.14.
- Barth, K.E., Righman, J.E. and Freeman, L.B. (2007), "Assessment of AASHTO LRFD specifications for hybrid HPS 690W steel I-girders", J. Bridg. Eng., 12(3), 380-388. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(380).
- Borst, R. de, Crisfield, M.A., Remmers, J.J.C. and Verhoosel, C. V. (2012), Nonlinear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Ltd.
- Bui, V.T. and Kim, S.E. (2021), "Nonlinear inelastic analysis of semi-rigid steel frames with circular concrete-filled steel tubular columns", Int. J. Mech. Sci., 196(January), 106273. https://doi.org/10.1016/j.ijmecsci.2021.106273.
- Bui, V.T., Truong, V.H., Trinh, M.C. and Kim, S.E. (2020), "Fully nonlinear analysis of steel-concrete composite girder with web local buckling effects", Int. J. Mech. Sci., 184. https://doi.org/10.1016/j.ijmecsci.2020.105729.
- Bui, V.T., Vu, Q.V., Truong, V.H. and Kim, S.E. (2021), "Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections", Steel Compos. Struct., 38(5), 497-521. https://doi.org/10.12989/scs.2021.38.5.497.
- Chen, W.-F. and Lui, E.M. (1997), Structural Stability: Theory and Implementation. Prentice Hall, New York.
- Chopra, A.K. (2019), "Dynamics of structures: Theory and applications to earthquake engineering", In Prentice-Hall International Series in Civil Engineering and Engineering Mechanics. Pearson.
- Ding, F.X., Tan, L., Liu, X.M. and Wan, L. (2017), "Behavior of circular thin-walled steel tube confined concrete stub columns", Steel Compos. Struct., 23(2), 229-238. https://doi.org/10.12989/scs.2017.23.2.229.
- Ding, F. Xing, Yin, Y. Xiang, Wang, L., Yu, Y., Luo, L. and Yu, Z.W. (2019), "Confinement coefficient of concrete-filled square stainless steel tubular stub columns", Steel Compos. Struct., 30(4), 337-350. https://doi.org/10.12989/scs.2019.30.4.337.
- Ding, F., Xing, Z.T., Wang, L. and Fu, L. (2019), "Further analysis on the flexural behavior of concrete-filled round-ended steel tubes", Steel Compos. Struct., 30(2), 149-169. https://doi.org/10.12989/scs.2019.30.2.149.
- ECCS, (1984), Ultimate Limit State Calculations of Sway Frames with Rigid Joints - Technical committee 8 - Structural Stability, No. 33.
- Eom, S.S., Vu, Q.V. and Choi, J.H. (2019), "Papazafeiropoulos, G., and Kim, S. E., (2019), Behavior of composite CFST beam-steel column joints", Steel Compos. Struct., 32(5), 583-594. https://doi.org/10.12989/scs.2019.32.5.583.
- Freire, A.M.S., Negrao, J.H.O. and Lopes, A.V. (2006), "Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges", Comput. Struct., 84(31-32), 2128-2140. https://doi.org/10.1016/j.compstruc.2006.08.047.
- Han, L.H., Yang, Y.F. and Tao, Z. (2003), "Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading", Thin-Wall. Struct., 41(9), 801-833. https://doi.org/10.1016/S0263-8231(03)00030-2.
- Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
- Ingham, T.J., Rodriguez, S. and Nader, M. (1997), "Nonlinear analysis of the Vincent Thomas Bridge for seismic retrofit", Comput. Struct., 64(5-6), 1221-1238. https://doi.org/10.1016/S0045-7949(97)00031-X.
- Kawaguchi, J., Morino, S., Sugimoto, T. and Shirai, J. (2002), "Experimental study on structural characteristics of Portal Frames Consisting of Square CFT Columns", Compos. Constr. Steel Concr. IV, 725-733. https://doi.org/10.1061/40616(281)63.
- Kim, S.E. and Thai, H.T. (2010), "Nonlinear inelastic dynamic analysis of suspension bridges", Eng. Struct., 32(12), 3845- 3856. https://doi.org/10.1016/j.engstruct.2010.08.027.
- Kim, S.E., Park, M.H. and Choi, S.H. (2001), "Direct design of three-dimensional frames using practical adavanced analysis", Eng. Struct., 23(11), 1491-1502. https://doi.org/10.1016/S0141-0296(01)00041-4.
- Liang, Q.Q. (2009a), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms", J. Constr. Steel Res., 65(2), 363-372. https://doi.org/10.1016/j.jcsr.2008.03.007.
- Liang, Q.Q. (2009b), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part II: Verification and applications", J. Constr. Steel Res., 65(2), 351-362. https://doi.org/10.1016/j.jcsr.2008.03.003.
- Liang, Q.Q., Uy, B. and Richard Liew, J.Y. (2007), "Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns", J. Constr. Steel Res., 63(3), 396-405. https://doi.org/10.1016/j.jcsr.2006.05.004.
- Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Compos. Struct., 29(2), 151-159. https://doi.org/10.12989/scs.2018.29.2.151.
- Luu, V.T., Bui, V.T. and Kim, S.E. (2023), "An advanced computational method for nonlinear inelastic thermo-mechanical analysis of spatial steel frames in fires", Eng. Struct., 275(PB), 115329. https://doi.org/10.1016/j.engstruct.2022.115329.
- Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical Strain-Stress model for confined concrete, J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
- Mccallen, D. and Astaneh-asl, A. (1997), SUSPNDRS : A Numerical Simulation Tool for the Nonlinear Transient Analysis of Cable Supported Bridge Structures Part I : Theoretical Development. https://doi.org/10.2172/605160.
- Michels, H.H. (1963), "Abscissas and weight coefficients for lobatto quadrature", Math. Comput., 17(83), 237. https://doi.org/10.2307/2003841.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85, 67-94. https://doi.org/10.1061/JMCEA3.0000098.
- Nguyen, P.C. and Kim, S. E., (2015), Second-order spread-of-plasticity approach for nonlinear time-history analysis of space semi-rigid steel frames, Finite Elem. Anal. Des., 105, 1-15. https://doi.org/10.1016/j.finel.2015.06.006.
- Nguyen, P.C. and Kim, S.E. (2017), "Investigating effects of various base restraints on the nonlinear inelastic static and seismic responses of steel frames, Int. J. Non. Linear. Mech., 89(April 2016), 151-167. https://doi.org/10.1016/j.ijnonlinmec.2016.12.011.
- Nguyen, T.T., Thai, H.T., Li, D., Wang, J., Uy, B. and Ngo, T. (2022), "Behaviour and design of eccentrically loaded CFST columns with high strength materials and slender sections", J. Constr. Steel Res., 188(June 2021), 107004. https://doi.org/10.1016/j.jcsr.2021.107004.
- PEER Ground Motion Database, Pacific Earthquake Engineering Research Center, (2013), Retrieved from https://ngawest2.berkeley.edu/spectras/445719/searches
- Phan, D.H.H., Patel, V.I., Al Abadi, H. and Thai, H.T. (2020), "Analysis and design of eccentrically compressed ultra-high-strength slender CFST circular columns", Structures, 27(December 2019), 2481-2499. https://doi.org/10.1016/j.istruc.2020.08.037.
- Schneider, S.P. (1999), "Axially loaded concrete-filled steel Tubes", J. Struct. Eng., 125(10), 1202-1206. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
- Shiravand, M.R. and Parvanehro, P. (2019), "Spatial variation of seismic ground motion effects on nonlinear responses of cable stayed bridges considering different soil types", Soil Dyn. Earthq. Eng., 119(January), 104-117. https://doi.org/10.1016/j.soildyn.2019.01.002.
- Song, W.K. and Kim, S.E. (2007), "Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts", Eng. Struct., 29(9), 2133-2142. https://doi.org/10.1016/j.engstruct.2006.11.005.
- Song, W.K., Kim, S.E. and Ma, S.S. (2007), "Nonlinear analysis of steel cable-stayed bridges", Comput. Civ. Infrastruct. Eng., 22(5), 358-366. https://doi.org/10.1111/j.1467-8667.2007.00492.x.
- Spacone, E., Ciampi, V. and Filippou, F.C. (1996), "Mixed formulation of nonlinear beam finite element", Comput. Struct., 58(1), 71-83. https://doi.org/10.1016/0045-7949(95)00103-N.
- Spacone, E., Filippou, F.C. and Taucer, F.F. (1996), "Fibre beam-column model for non-linear analysis of R/C frames: Part I. Formulation", Earthq. Eng. Struct. Dyn., 25, 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
- Susantha, K.A.S., Ge, H., and Usami, T., (2001), Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes, Eng. Struct., 23(10), 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7.
- Taucer, F.F., Spacone, E. and Filippou, F.C. (1991), "A fiber beam-column element for seismic response analysis of reinforced Concrete Structures", Berkeley, Calif. Earthq. Eng. Res. Center, Coll. Eng. Univ. California., 91.
- Thai, H.T. and Kim, S.E. (2008), "Second-order inelastic dynamic analysis of three-dimensional cable-stayed bridges", Int. J. Steel Struct., 8(3), 205-214.
- Thai, H.T. and Kim, S.E. (2011a), "Nonlinear inelastic analysis of concrete-filled steel tubular frames", J. Constr. Steel Res., 67(12), 1797-1805. https://doi.org/10.1016/j.jcsr.2011.05.004.
- Thai, H.T. and Kim, S.E. (2011b), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47(3), 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
- Thai, H.T. and Kim, S.E. (2011c), "Practical advanced analysis software for nonlinear inelastic dynamic analysis of steel structures", J. Constr. Steel Res., 67(3), 453-461. https://doi.org/10.1016/j.jcsr.2010.09.009.
- Thai, H.T. and Kim, S.E. (2011d), "Second-order inelastic dynamic analysis of steel frames using fiber hinge method", J. Constr. Steel Res., 67(10), 1485-1494. https://doi.org/10.1016/j.jcsr.2011.03.022.
- Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
- Thai, H.T., Kim, S.E. and Kim, J. (2017), "Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling", Steel Compos. Struct., 24(3), 339-349. https://doi.org/10.12989/scs.2017.24.3.339.
- Thai, H. T., Uy, B. and Khan, M. (2015), "A modified stress-strain model accounting for the local buckling of thin-walled stub columns under axial compression", J. Constr. Steel Res., 111, 57-69. https://doi.org/10.1016/j.jcsr.2015.04.002.
- Thai, H.T., Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2014), "Numerical modelling of concrete-filled steel box columns incorporating high strength materials", J. Constr. Steel Res., 102, 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014.
- Tomii, M. and Sakino, K., (1979), "Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns", Trans. Archit. Inst. Japan, 275, 55-65. https://doi.org/10.3130/AIJSAXX.275.0_55.
- Uy, B. (2001a), "Local and postlocal buckling of fabricated steel and composite cross sections", J. Struct. Eng., 127(6), 666-677. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(666).
- Uy, B. (2001b), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.
- Wang, L., Cao, X.X., Ding, F.X., Luo, L., Sun, Y., Liu, X.M. and Su, H.L. (2018), "Composite action of concrete-filled double circular steel tubular stub columns", Steel Compos. Struct., 29(1), 77-90. https://doi.org/10.12989/scs.2018.29.1.077.
- Wang, Y.H., Nie, J.G. and Cai, C.S. (2013), "Numerical modeling on concrete structures and steel-concrete composite frame structures", Compos. Part B Eng., 51, 58-67. https://doi.org/10.1016/j.compositesb.2013.02.035.
- Wen, J., Han, Q., Xie, Y., Du, X. and Zhang, J., (2021), "Performance-based seismic design and optimization of damper devices for cable-stayed bridge", Eng. Struct., 237(July 2020), 112043. https://doi.org/10.1016/j.engstruct.2021.112043.
- Xiang, Y. (2018), Static and Dynamic Analyses of a Long-Span Cable-Stayed Bridge with Corroded Cables. https://doi.org/10.20381/ruor-22699.
- Yi, J. and Yu, D. (2021), "Longitudinal damage of cable-stayed bridges subjected to near-fault ground motion pulses", Adv. Bridg. Eng., 2(1). https://doi.org/10.1186/s43251-021-00034-x.
- Zarringol, M., Thai, H.T., Ngo, T. and Patel, V. (2020), "Behaviour and design calculations of rectangular CFST beam-columns with slender sections", Eng. Struct., 222(December 2019), 111142. https://doi.org/10.1016/j.engstruct.2020.111142.
- Zhang, C. and Huang, K. (2014), "Influence law of tower stiffness on vertical stiffness of three-tower self-anchored suspension bridge based on frequency formulas", J. Vibroeng., 16(6), 2908-2919.
- Zhang, C., Lu, J., Zhou, Z., Yan, X., Xu, L. and Lin, J. (2021), "Lateral seismic fragility assessment of cable-stayed bridge with diamond-shaped concrete pylons", Shock Vib., 2021. https://doi.org/10.1155/2021/2847603.
- Zhang, T., Ding, F. xing, Wang, L., Liu, X.M. and Jiang, G.S. (2018), "Behavior of polygonal concrete-filled steel tubular stub columns under axial loading", Steel Compos. Struct., 28(5), 573-588. https://doi.org/10.12989/scs.2018.28.5.573.
- Zhou, L., Wang, X. and Ye, A. (2019), "Shake table test on transverse steel damper seismic system for long span cable-stayed bridges", Eng. Struct., 179(October 2018), 106-119. https://doi.org/10.1016/j.engstruct.2018.10.073.