DOI QR코드

DOI QR Code

Second-order inelastic dynamic analysis of cable-stayed bridges using rectangular concrete-filled steel tubular columns

  • Van-Tuong Bui (Department of Civil and Environmental Engineering, Sejong University) ;
  • Seung-Eock Kim (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2022.04.05
  • Accepted : 2024.09.19
  • Published : 2024.09.25

Abstract

An advanced numerical method is proposed in this paper for the second-order inelastic dynamic analysis of cable-stayed bridges using rectangular concrete-filled steel tubular (CFST) columns under earthquake loadings for the first time. The proposed method can exactly predict the nonlinear response of the bridges by using only one element per member in simulating the structural model. This comes from considering both the geometric and material nonlinearities in a fiber beam-column element and a catenary cable element. In the fiber beam-column element, the geometric nonlinearities are captured by applying the stability functions, whereas the material nonlinearities are evaluated by tracing the uniaxial cyclic stress-strain curves of each fiber on the cross-sections, which are located at the integration points along the member length. A computer program was developed based on Newmark's average acceleration algorithm to solve the nonlinear equations of motion. The accuracy and computational efficiency of the proposed program were verified by comparing the predicted results with the experimental results, and the results obtained from the commercial software SAP2000 and ABAQUS. The proposed program is promising as a useful tool for practical designs for the nonlinear inelastic dynamic analysis of cable-stayed bridges.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2021R1A2B5B01002577).

References

  1. ABAQUS, (2014), ABAQUS. (2014). ABAQUS/Standard, User's Guide, Version 6.14.
  2. Barth, K.E., Righman, J.E. and Freeman, L.B. (2007), "Assessment of AASHTO LRFD specifications for hybrid HPS 690W steel I-girders", J. Bridg. Eng., 12(3), 380-388. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(380).
  3. Borst, R. de, Crisfield, M.A., Remmers, J.J.C. and Verhoosel, C. V. (2012), Nonlinear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Ltd.
  4. Bui, V.T. and Kim, S.E. (2021), "Nonlinear inelastic analysis of semi-rigid steel frames with circular concrete-filled steel tubular columns", Int. J. Mech. Sci., 196(January), 106273. https://doi.org/10.1016/j.ijmecsci.2021.106273.
  5. Bui, V.T., Truong, V.H., Trinh, M.C. and Kim, S.E. (2020), "Fully nonlinear analysis of steel-concrete composite girder with web local buckling effects", Int. J. Mech. Sci., 184. https://doi.org/10.1016/j.ijmecsci.2020.105729.
  6. Bui, V.T., Vu, Q.V., Truong, V.H. and Kim, S.E. (2021), "Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections", Steel Compos. Struct., 38(5), 497-521. https://doi.org/10.12989/scs.2021.38.5.497.
  7. Chen, W.-F. and Lui, E.M. (1997), Structural Stability: Theory and Implementation. Prentice Hall, New York.
  8. Chopra, A.K. (2019), "Dynamics of structures: Theory and applications to earthquake engineering", In Prentice-Hall International Series in Civil Engineering and Engineering Mechanics. Pearson.
  9. Ding, F.X., Tan, L., Liu, X.M. and Wan, L. (2017), "Behavior of circular thin-walled steel tube confined concrete stub columns", Steel Compos. Struct., 23(2), 229-238. https://doi.org/10.12989/scs.2017.23.2.229.
  10. Ding, F. Xing, Yin, Y. Xiang, Wang, L., Yu, Y., Luo, L. and Yu, Z.W. (2019), "Confinement coefficient of concrete-filled square stainless steel tubular stub columns", Steel Compos. Struct., 30(4), 337-350. https://doi.org/10.12989/scs.2019.30.4.337.
  11. Ding, F., Xing, Z.T., Wang, L. and Fu, L. (2019), "Further analysis on the flexural behavior of concrete-filled round-ended steel tubes", Steel Compos. Struct., 30(2), 149-169. https://doi.org/10.12989/scs.2019.30.2.149.
  12. ECCS, (1984), Ultimate Limit State Calculations of Sway Frames with Rigid Joints - Technical committee 8 - Structural Stability, No. 33.
  13. Eom, S.S., Vu, Q.V. and Choi, J.H. (2019), "Papazafeiropoulos, G., and Kim, S. E., (2019), Behavior of composite CFST beam-steel column joints", Steel Compos. Struct., 32(5), 583-594. https://doi.org/10.12989/scs.2019.32.5.583.
  14. Freire, A.M.S., Negrao, J.H.O. and Lopes, A.V. (2006), "Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges", Comput. Struct., 84(31-32), 2128-2140. https://doi.org/10.1016/j.compstruc.2006.08.047.
  15. Han, L.H., Yang, Y.F. and Tao, Z. (2003), "Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading", Thin-Wall. Struct., 41(9), 801-833. https://doi.org/10.1016/S0263-8231(03)00030-2.
  16. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  17. Ingham, T.J., Rodriguez, S. and Nader, M. (1997), "Nonlinear analysis of the Vincent Thomas Bridge for seismic retrofit", Comput. Struct., 64(5-6), 1221-1238. https://doi.org/10.1016/S0045-7949(97)00031-X.
  18. Kawaguchi, J., Morino, S., Sugimoto, T. and Shirai, J. (2002), "Experimental study on structural characteristics of Portal Frames Consisting of Square CFT Columns", Compos. Constr. Steel Concr. IV, 725-733. https://doi.org/10.1061/40616(281)63.
  19. Kim, S.E. and Thai, H.T. (2010), "Nonlinear inelastic dynamic analysis of suspension bridges", Eng. Struct., 32(12), 3845- 3856. https://doi.org/10.1016/j.engstruct.2010.08.027.
  20. Kim, S.E., Park, M.H. and Choi, S.H. (2001), "Direct design of three-dimensional frames using practical adavanced analysis", Eng. Struct., 23(11), 1491-1502. https://doi.org/10.1016/S0141-0296(01)00041-4.
  21. Liang, Q.Q. (2009a), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms", J. Constr. Steel Res., 65(2), 363-372. https://doi.org/10.1016/j.jcsr.2008.03.007.
  22. Liang, Q.Q. (2009b), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part II: Verification and applications", J. Constr. Steel Res., 65(2), 351-362. https://doi.org/10.1016/j.jcsr.2008.03.003.
  23. Liang, Q.Q., Uy, B. and Richard Liew, J.Y. (2007), "Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns", J. Constr. Steel Res., 63(3), 396-405. https://doi.org/10.1016/j.jcsr.2006.05.004.
  24. Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Compos. Struct., 29(2), 151-159. https://doi.org/10.12989/scs.2018.29.2.151.
  25. Luu, V.T., Bui, V.T. and Kim, S.E. (2023), "An advanced computational method for nonlinear inelastic thermo-mechanical analysis of spatial steel frames in fires", Eng. Struct., 275(PB), 115329. https://doi.org/10.1016/j.engstruct.2022.115329.
  26. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical Strain-Stress model for confined concrete, J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  27. Mccallen, D. and Astaneh-asl, A. (1997), SUSPNDRS : A Numerical Simulation Tool for the Nonlinear Transient Analysis of Cable Supported Bridge Structures Part I : Theoretical Development. https://doi.org/10.2172/605160.
  28. Michels, H.H. (1963), "Abscissas and weight coefficients for lobatto quadrature", Math. Comput., 17(83), 237. https://doi.org/10.2307/2003841.
  29. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85, 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  30. Nguyen, P.C. and Kim, S. E., (2015), Second-order spread-of-plasticity approach for nonlinear time-history analysis of space semi-rigid steel frames, Finite Elem. Anal. Des., 105, 1-15. https://doi.org/10.1016/j.finel.2015.06.006.
  31. Nguyen, P.C. and Kim, S.E. (2017), "Investigating effects of various base restraints on the nonlinear inelastic static and seismic responses of steel frames, Int. J. Non. Linear. Mech., 89(April 2016), 151-167. https://doi.org/10.1016/j.ijnonlinmec.2016.12.011.
  32. Nguyen, T.T., Thai, H.T., Li, D., Wang, J., Uy, B. and Ngo, T. (2022), "Behaviour and design of eccentrically loaded CFST columns with high strength materials and slender sections", J. Constr. Steel Res., 188(June 2021), 107004. https://doi.org/10.1016/j.jcsr.2021.107004.
  33. PEER Ground Motion Database, Pacific Earthquake Engineering Research Center, (2013), Retrieved from https://ngawest2.berkeley.edu/spectras/445719/searches
  34. Phan, D.H.H., Patel, V.I., Al Abadi, H. and Thai, H.T. (2020), "Analysis and design of eccentrically compressed ultra-high-strength slender CFST circular columns", Structures, 27(December 2019), 2481-2499. https://doi.org/10.1016/j.istruc.2020.08.037.
  35. Schneider, S.P. (1999), "Axially loaded concrete-filled steel Tubes", J. Struct. Eng., 125(10), 1202-1206. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  36. Shiravand, M.R. and Parvanehro, P. (2019), "Spatial variation of seismic ground motion effects on nonlinear responses of cable stayed bridges considering different soil types", Soil Dyn. Earthq. Eng., 119(January), 104-117. https://doi.org/10.1016/j.soildyn.2019.01.002.
  37. Song, W.K. and Kim, S.E. (2007), "Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts", Eng. Struct., 29(9), 2133-2142. https://doi.org/10.1016/j.engstruct.2006.11.005.
  38. Song, W.K., Kim, S.E. and Ma, S.S. (2007), "Nonlinear analysis of steel cable-stayed bridges", Comput. Civ. Infrastruct. Eng., 22(5), 358-366. https://doi.org/10.1111/j.1467-8667.2007.00492.x.
  39. Spacone, E., Ciampi, V. and Filippou, F.C. (1996), "Mixed formulation of nonlinear beam finite element", Comput. Struct., 58(1), 71-83. https://doi.org/10.1016/0045-7949(95)00103-N.
  40. Spacone, E., Filippou, F.C. and Taucer, F.F. (1996), "Fibre beam-column model for non-linear analysis of R/C frames: Part I. Formulation", Earthq. Eng. Struct. Dyn., 25, 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
  41. Susantha, K.A.S., Ge, H., and Usami, T., (2001), Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes, Eng. Struct., 23(10), 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7.
  42. Taucer, F.F., Spacone, E. and Filippou, F.C. (1991), "A fiber beam-column element for seismic response analysis of reinforced Concrete Structures", Berkeley, Calif. Earthq. Eng. Res. Center, Coll. Eng. Univ. California., 91.
  43. Thai, H.T. and Kim, S.E. (2008), "Second-order inelastic dynamic analysis of three-dimensional cable-stayed bridges", Int. J. Steel Struct., 8(3), 205-214.
  44. Thai, H.T. and Kim, S.E. (2011a), "Nonlinear inelastic analysis of concrete-filled steel tubular frames", J. Constr. Steel Res., 67(12), 1797-1805. https://doi.org/10.1016/j.jcsr.2011.05.004.
  45. Thai, H.T. and Kim, S.E. (2011b), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47(3), 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
  46. Thai, H.T. and Kim, S.E. (2011c), "Practical advanced analysis software for nonlinear inelastic dynamic analysis of steel structures", J. Constr. Steel Res., 67(3), 453-461. https://doi.org/10.1016/j.jcsr.2010.09.009.
  47. Thai, H.T. and Kim, S.E. (2011d), "Second-order inelastic dynamic analysis of steel frames using fiber hinge method", J. Constr. Steel Res., 67(10), 1485-1494. https://doi.org/10.1016/j.jcsr.2011.03.022.
  48. Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
  49. Thai, H.T., Kim, S.E. and Kim, J. (2017), "Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling", Steel Compos. Struct., 24(3), 339-349. https://doi.org/10.12989/scs.2017.24.3.339.
  50. Thai, H. T., Uy, B. and Khan, M. (2015), "A modified stress-strain model accounting for the local buckling of thin-walled stub columns under axial compression", J. Constr. Steel Res., 111, 57-69. https://doi.org/10.1016/j.jcsr.2015.04.002.
  51. Thai, H.T., Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2014), "Numerical modelling of concrete-filled steel box columns incorporating high strength materials", J. Constr. Steel Res., 102, 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014.
  52. Tomii, M. and Sakino, K., (1979), "Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns", Trans. Archit. Inst. Japan, 275, 55-65. https://doi.org/10.3130/AIJSAXX.275.0_55.
  53. Uy, B. (2001a), "Local and postlocal buckling of fabricated steel and composite cross sections", J. Struct. Eng., 127(6), 666-677. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(666).
  54. Uy, B. (2001b), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.
  55. Wang, L., Cao, X.X., Ding, F.X., Luo, L., Sun, Y., Liu, X.M. and Su, H.L. (2018), "Composite action of concrete-filled double circular steel tubular stub columns", Steel Compos. Struct., 29(1), 77-90. https://doi.org/10.12989/scs.2018.29.1.077.
  56. Wang, Y.H., Nie, J.G. and Cai, C.S. (2013), "Numerical modeling on concrete structures and steel-concrete composite frame structures", Compos. Part B Eng., 51, 58-67. https://doi.org/10.1016/j.compositesb.2013.02.035.
  57. Wen, J., Han, Q., Xie, Y., Du, X. and Zhang, J., (2021), "Performance-based seismic design and optimization of damper devices for cable-stayed bridge", Eng. Struct., 237(July 2020), 112043. https://doi.org/10.1016/j.engstruct.2021.112043.
  58. Xiang, Y. (2018), Static and Dynamic Analyses of a Long-Span Cable-Stayed Bridge with Corroded Cables. https://doi.org/10.20381/ruor-22699.
  59. Yi, J. and Yu, D. (2021), "Longitudinal damage of cable-stayed bridges subjected to near-fault ground motion pulses", Adv. Bridg. Eng., 2(1). https://doi.org/10.1186/s43251-021-00034-x.
  60. Zarringol, M., Thai, H.T., Ngo, T. and Patel, V. (2020), "Behaviour and design calculations of rectangular CFST beam-columns with slender sections", Eng. Struct., 222(December 2019), 111142. https://doi.org/10.1016/j.engstruct.2020.111142.
  61. Zhang, C. and Huang, K. (2014), "Influence law of tower stiffness on vertical stiffness of three-tower self-anchored suspension bridge based on frequency formulas", J. Vibroeng., 16(6), 2908-2919.
  62. Zhang, C., Lu, J., Zhou, Z., Yan, X., Xu, L. and Lin, J. (2021), "Lateral seismic fragility assessment of cable-stayed bridge with diamond-shaped concrete pylons", Shock Vib., 2021. https://doi.org/10.1155/2021/2847603.
  63. Zhang, T., Ding, F. xing, Wang, L., Liu, X.M. and Jiang, G.S. (2018), "Behavior of polygonal concrete-filled steel tubular stub columns under axial loading", Steel Compos. Struct., 28(5), 573-588. https://doi.org/10.12989/scs.2018.28.5.573.
  64. Zhou, L., Wang, X. and Ye, A. (2019), "Shake table test on transverse steel damper seismic system for long span cable-stayed bridges", Eng. Struct., 179(October 2018), 106-119. https://doi.org/10.1016/j.engstruct.2018.10.073.