DOI QR코드

DOI QR Code

On the buckling of smart beams in racket frames for enhancing the player's control using numerical solution and sinusoidal shear deformation theory

  • Liyan Li (College of P.E, Luoyang Normal University) ;
  • Maryam Shokravi (Energy Institute of Higher Education, Mehrab High School) ;
  • S.S. Wang (Faculty of Applied Sciences, Dubai Company of Buildings)
  • Received : 2024.04.23
  • Accepted : 2024.09.19
  • Published : 2024.09.25

Abstract

In the present analysis, the buckling behavior of smart beams integrated into racket frames for enhancing player control was examined by numerical solutions and sinusoidal shear deformation theory. The smart beam under consideration is subjected to an external voltage in the thickness direction. The integration of this smart material into the structure of the racket should optimize performance, improving the racket's stability and responsiveness during play. In this, an accurate representation of complex shear effects is made by using a sinusoidal shear deformation theory, while the solution of the resulting governing equations is made by numerical methods. The critical buckling loads and the characteristics of deformation obtained through the analysis provide insight into some design parameters controlling and influencing stability. Obtained results are validated with other published works. The length and thickness of the beam, elastic medium, boundary condition, and influence of external voltages have been represented for buckling load in the structure. These results will help in designing smart racket frames using smart beams to provide more precision and control for the players in an intelligent way.

Keywords

References

  1. Alesadi, A., Galehdari, M., and Shojaee, S. (2017), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013. 
  2. Allahyari, S.M.R., Shokravi, M. and Murmy, T.T. (2024), "Modeling of truncated nanocompositeconical shell structures for dynamic stability response", Struct. Eng. Mech., 91, 325-334, https://doi.org/10.12989/sem.2024.91.3.325. 
  3. Bakhshandeh Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Construct. Build. Mat., 174, 633-644. 
  4. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. 
  5. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F., and Tounsi, A., (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69, 457-466. https://doi.org/10.12989/sem.2019.69.4.457. 
  6. Bilouei, B.S., Kolahchi, R., and Bidgoli, M.R., (2018), "Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. , 18, 1053-106. https://doi.org/10.12989/cac.2016.18.6.1053. 
  7. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269. 
  8. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479. 
  9. Khelifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M., (2018),"Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67, 125-130. https://doi.org/10.12989/sem.2018.67.2.125. 
  10. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015b), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9. 
  11. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032. 
  12. Kolahchi, R., Moniri Bidgoli, A.M. and Heydari, M.M. (2015a), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014, http://dx.doi.org/10.12989/sem.2015.55.5.1001. 
  13. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023. 
  14. Li, H., Lu, H. and Li, Q. (2024), "Numerical investigations of the influences of valve spool structure on the eccentric jet flow characteristic in high-pressure angle valves", Energy, 298, 131378. https://doi.org/10.1016/j.energy.2024.131378. 
  15. Mehri, M., Asadi, H. and Wang, Q., (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017.
  16. Mosharrafian, F. and Kolahchi, R., (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., 58, 931-947. https://doi.org/10.12989/sem.2016.58.5.931. 
  17. Motezaker, M,. Jamali, M. and Kolahchi, R. (2021a), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocalpiezoelasticity theory, Comput. Appl. Math. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625. 
  18. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021b), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. 
  19. Nejati, M., Eslampanah, A. and Najafizadeh, M., (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. J. Appl. Mech., 8, 1650008. https://doi.org/10.1142/S1758825116500083. 
  20. Thai, H-T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009. 
  21. Vodenitcharova, T. and Zhang, L., (2006), "Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube", Int. J. solids Struct., 43, 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014. 
  22. Wang, C., Wang, Z., Zhang, S., Liu, X. and Tan, J. (2023), "Reinforced quantum-behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable-diameter-die-formed metal bent tubes", J. Comput. Des. Eng., 10(3), 1060-1079. https://doi.org/10.1093/jcde/qwad037. 
  23. Wang, K., Boonpratatong, A., Chen, W., Ren, L., Wei, G., Qian, Z. and Zhao, D. (2023c), "The fundamental property of human leg during walking: Linearity and nonlinearity", IEEE Transac. Neural Syst. Rehab. Eng., 31, 4871-4881. https://doi.org/10.1109/TNSRE.2023.3339801. 
  24. Wang, Z., Zhou, T., Zhang, S., Sun, C., Li, J. and Tan, J. (2023b), "Bo-LSTM based cross-sectional profile sequence progressive prediction method for metal tube rotate draw bending", Adv. Eng. Inform., 58, 102152. https://doi.org/10.1016/j.aei.2023.102152. 
  25. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048. 
  26. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded beams reinforced with SiO2 nano-particles", Wind Struct., 24, 43-57. https://doi.org/10.12989/was.2017.24.1.043. 
  27. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009. 
  28. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Cleaner Product., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390. 
  29. Zhang, W., Lin, J., Huang, Y., Lin, B. and Kang, S. (2024), "Temperature-dependent debonding behavior of adhesively bonded CFRP-UHPC interface", Compos. Struct., 340, 118200. https://doi.org/10.1016/j.compstruct.2024.118200. 
  30. Zhou, Y., Xie, J., Zhang, X., Wu, W. and Kwong, S. (2024), "Energy-efficient and interpretable multisensor human activity recognition via deep fused lasso net", IEEE Transact. Emergency Topics Comput. Intell., 1-13. https://doi.org/10.1109/TETCI.2024.3430008.