과제정보
The authors acknowledge the technical support provided by the Jordan University of Science and Technology (JUST).
참고문헌
- ACI318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and cCommentary.
- Al-Rousan, R. and Alnemrawi, B.R. (2024a), "NLFEA of the behavior of polypropylene-fiber-reinforced concrete slabs with square opening", Buildings, 14(2), 480. https://doi.org/10.3390/buildings14020480.
- Al-Rousan, R.Z., Abdalla, K.M. and Alnemrawi, B.R. (2024), "The behavior of heat-damaged RC beams reinforced internally with CFRP strips", 4th International Conference "Coordinating Engineering for Sustainability and Resilience" & Midterm Conference of CircularB "Implementation of Circular Economy in the Built Environment.
- Al-Rousan, R.Z. and Alnemrawi, B.R. (2023a), "Interface shear strength prediction of CFRP-strengthened sulfate-damaged shear keys using NLFEA", Int. J. Civil Eng., 21(8), 1385-1402. https://doi.org/10.1007/s40999-023-00829-1.
- Al-Rousan, R.Z. and Alnemrawi, B.R. (2023b), "Prediction of interface shear strength of heat damaged shear-keys using nonlinear finite element analysis", J. Appl. Comput. Mech., https://doi.org/10.22055/jacm.2023.42998.4000.
- Al-Rousan, R.Z. and Alnemrawi, B.R. (2023c), "Punching shear code provisions examination against the creation of an opening in existed RC flat slab of various sizes and locations", Structures, 49, 875-888. https://doi.org/10.1016/j.istruc.2023.02.007.
- Al-Rousan, R.Z. and Alnemrawi, B.R. (2024b), "Accurate theoretical modeling and code prediction of the punching shear failure capacity of reinforced concrete slabs", Steel Compos. Struct., 52(4), 419. https://doi.org/10.12989/scs.2024.52.4.419.
- Alnemrawi, B.R., Al-Rousan, R.Z. and Ababneh, A.N. (2024a), "The role of CFRP strengthening in improving the punching shear behavior of heat-damaged flat slabs with openings of different sizes and locations", Eng. Fail. Anal., 160, 108208. https://doi.org/10.1016/j.engfailanal.2024.108208.
- Alnemrawi, B.R., Al-Rousan, R.Z. and Ababneh, A.N. (2024b), "The structural behavior of heat-damaged flat slabs with openings of different sizes and locations", Arab. J. Sci. Eng., 49(4), 5403-5430. https://doi.org/10.1007/s13369-023-08411-6.
- Alrousan, R.Z. and Alnemrawi, B.R. (2022a), "The influence of concrete compressive strength on the punching shear capacity of reinforced concrete flat slabs under different opening configurations and loading conditions", Structures, 44, 101-119. https://doi.org/10.1016/j.istruc.2022.07.091.
- Alrousan, R.Z. and Alnemrawi, B.R. (2022b), "Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions", Case Studies Construct. Mater., 17, e01508. https://doi.org/10.1016/j.cscm.2022.e01508.
- Annerel, E., Taerwe, L., Merci, B., Jansen, D., Bamonte, P. and Felicetti, R. (2013), "Thermo-mechanical analysis of an underground car park structure exposed to fire", Fire Safety J., 57, 96-106. https://doi.org/10.1016/j.firesaf.2012.07.006.
- ASTM (2001), STM E119: Standard Test Methods for Fire Tests of Building Construction and Materials.
- British Standard Institute BS-476-21 (1953), "Fire tests on building materials and structures", 476(6).
- Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs-a detailed experimental study", Steel Compos. Struct., 11(3), 233-250. https://doi.org/10.12989/scs.2011.11.3.233.
- Emori, K. (2003), "Strength and structural barrier function of steel channel-reinforced concrete composite slabs", Steel Compos. Struct., 3(4), 243-260. https://doi.org/10.12989/scs.2003.3.4.243.
- Evarts, B. and Stein, G.P. (2020), US Fire Department Profile 2018, National Fire Protection Association Quincy, MA, USA.
- Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
- Genikomsou, A.S. and Polak, M.A. (2016), "Finite-element analysis of reinforced concrete slabs with punching shear reinforcement", J. Struct. Eng., 142(12), 04016129. doi:10.1061/(ASCE)ST.1943-541X.0001603.
- Genikomsou, A.S. and Polak, M.A. (2017), "3D finite element investigation of the compressive membrane action effect in reinforced concrete flat slabs", Eng. Struct., 136, 233-244. https://doi.org/10.1016/j.engstruct.2017.01.024.
- George, S.J. and Tian, Y. (2012), "Structural performance of reinforced concrete flat plate buildings subjected to rire", Int. J. Concrete Struct. Mater., 6(2), 111-121. https://doi.org/10.1007/s40069-012-0011-2.
- Hsu, T.T. (1994), "Unified theory of reinforced concrete-A summary", Structural engineering and mechanics: An international journal. 2(1), 1-16.
- Institution, B.S. (2005), Eurocode 2: Design of Concrete Structures-Part 1-2: General Rules-Structural Fire Design, British Standards Institution.
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of Concrete Structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
- LennonTom (2011), Structural Fire Engineering Design, ICE Publishing
- Lie, T.T. and Williams-Leir, G. (1979), "Factors affecting temperature of fire-exposed concrete slabs", Fire Mater., 3(2), 74-79. https://doi.org/10.1002/fam.810030204.
- Lopes, E. and Simoes, R. (2008), "Experimental and analytical behaviour of composite slabs", Steel Compos. Struct,. 8(5), 361-388. https://doi.org/10.12989/scs.2008.8.5.361.
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
- Marques, M.G., Liberati, E.A.P., Pimentel, M.J., de Souza, R.A. and Trautwein, L.M. (2020), "Nonlinear finite element analysis (NLFEA) of reinforced concrete flat slabs with holes", Structures. 27, 1-11. https://doi.org/10.1016/j.istruc.2020.05.004.
- Moss, P.J., Dhakal, R.P., Wang, G. and Buchanan, A.H. (2008), "The fire behaviour of multi-bay, two-way reinforced concrete slabs", Eng. Struct., 30(12), 3566-3573. https://doi.org/10.1016/j.engstruct.2008.05.028.
- Mostofinejad, D., Jafarian, N., Naderi, A., Mostofinejad, A. and Salehi, M. (2020), "Effects of openings on the punching shear strength of reinforced concrete slabs", Structures. 25, 760-773. https://doi.org/10.1016/j.istruc.2020.03.061.
- Ospina, C.E., Birkle, G. and Widianto (2012), Databank of Concentric Punching Shear Tests of Two-Way Concrete Slabs without Shear Reinforcement at Interior Supports,
- P. Bamonte, R.F. and Gambarova, P.G. (2009), "Punching shear in fire-damaged reinforced concrete slabs", ACI Symposium Publication, 265, 345-366. https://doi.org/10.14359/51663303.
- Peng, Z., Orton, S.L., Liu, J. and Tian, Y. (2017), "Experimental study of dynamic progressive collapse in flat-plate buildings subjected to exterior column removal", J. Struct. Eng., 143(9), 04017125. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001865.
- Peng, Z., Orton, S.L., Liu, J. and Tian, Y. (2018), "Experimental study of dynamic progressive collapse in flat-plate buildings subjected to an interior column removal", J. Struct. Eng., 144(8), 04018094. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002106.
- RILEM, T.C.2.H. (2007), "Recommendation of RILEM TC 200-HTC: mechanical concrete properties at high temperatures? modelling and applications", Mater. Struct., 40(9), 855-864.
- Sanchez, L., Gutierrez-Solana, F. and Pesquera, D. (2004), "Fatigue behaviour of punched structural plates", Eng. Fail. Anal., 11(5), 751-764. https://doi.org/10.1016/j.engfailanal.2003.10.002.
- Saravanan, M., Marimuthu, V., Prabha, P., Arul Jayachandran, S. and Datta, D. (2012), "Experimental investigations on composite slabs to evaluate longitudinal shear strength", Steel Compos. Struct., 13(5), 489-500. https://doi.org/10.12989/scs.2012.13.5.489.
- Shu, J., Fall, D., Plos, M., Zandi, K. and Lundgren, K. (2015), "Development of modelling strategies for two-way RC slabs", Eng. Struct., 101, 439-449. https://doi.org/10.1016/j.engstruct.2015.07.003.
- Wang, W.-Y., Li, G.-Q. and Kodur, V. (2013), "Approach for modeling fire insulation damage in steel columns", J. Struct. Eng., 139(4), 491-503. https://doi-org/10.1061/(ASCE)ST.1943-541X.0000688.
- Wang, Y.C. and Moore, D.B. (1995), "Steel frames in fire: Analysis", Eng. Struct., 17(6), 462-472. https://doi.org/10.1016/0141-0296(95)00047-B.
- Yankelevsky, D.Z., Karinski, Y.S., Brodsky, A. and Feldgun, V.R. (2021), "Dynamic punching shear of impacting RC flat slabs with drop panels", Eng. Fail. Anal., 129, 105682. https://doi.org/10.1016/j.engfailanal.2021.105682.
- Zaharia, R., Vulcu, C., Vassart, O., Gernay, T. and Franssen, J.-M. (2013), "Numerical analysis of partially fire protected composite slabs", Steel Compos. Struct., 14(1), 21-39. https://doi.org/10.12989/scs.2013.14.1.0219.
- ISO 834-1 (1999), Fire-Resistance Tests-Elements of Building Construction, Part 1: General Requirements.
- ACI 216.1-97 (1997), Standard Method for Determining Fire Resistance of Concrete and Masonry Construction Assemblies.