DOI QR코드

DOI QR Code

Slab slenderness effect on the punching shear failure of heat-damaged reinforced concrete flat slabs with different opening configurations and flexural reinforcement areas

  • Rajai Z. Al-Rousan (Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology) ;
  • Bara'a R. Alnemrawi (Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology)
  • Received : 2024.05.17
  • Accepted : 2024.09.18
  • Published : 2024.09.25

Abstract

Punching shear is a brittle failure that occurs within the RC flat slabs where stresses are concentrated within small regions, resulting in a catastrophic and unfavorable progressive collapse. However, increasing the slab slenderness ratio is believed to significantly affect the slab's behavior by the induced strain values throughout the slab depth. This study examines the punching shear behavior of flat slabs by the nonlinear finite element analysis approach using ABAQUS software, where 72 models were investigated. The parametric study includes the effect of opening existence, opening-to-column ratio (O/C), temperature level, slenderness ratio (L/d), and flexural reinforcement rebar diameter. The behavior of the punching shear failure was fully examined under elevated temperatures which was not previously considered in detail along with the combined effect of the other sensitive parameters (opening size, slab slenderness, and reinforcement rebar size). It has been realized that increasing the slab slenderness has a major role in affecting the slab's structural behavior, besides the effect of the flexural reinforcement ratio. Reducing the slab's slenderness from 18.27 to 5.37 increased the cracking load by seven times for the slab without openings compared to nine times for the initial stiffness value. In addition, the toughness capacity is reduced up to 80% upon creating an opening, where the percentage is further increased by increasing the opening size by about an additional 10%. Finally, the ultimate deflection capacity of flat slabs with an opening is increased compared to the solid slab with the enhancement being increased for openings of larger size, larger depths, and higher exposure temperature.

Keywords

Acknowledgement

The authors acknowledge the technical support provided by the Jordan University of Science and Technology (JUST).

References

  1. ACI318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and cCommentary.
  2. Al-Rousan, R. and Alnemrawi, B.R. (2024a), "NLFEA of the behavior of polypropylene-fiber-reinforced concrete slabs with square opening", Buildings, 14(2), 480. https://doi.org/10.3390/buildings14020480.
  3. Al-Rousan, R.Z., Abdalla, K.M. and Alnemrawi, B.R. (2024), "The behavior of heat-damaged RC beams reinforced internally with CFRP strips", 4th International Conference "Coordinating Engineering for Sustainability and Resilience" & Midterm Conference of CircularB "Implementation of Circular Economy in the Built Environment.
  4. Al-Rousan, R.Z. and Alnemrawi, B.R. (2023a), "Interface shear strength prediction of CFRP-strengthened sulfate-damaged shear keys using NLFEA", Int. J. Civil Eng., 21(8), 1385-1402. https://doi.org/10.1007/s40999-023-00829-1.
  5. Al-Rousan, R.Z. and Alnemrawi, B.R. (2023b), "Prediction of interface shear strength of heat damaged shear-keys using nonlinear finite element analysis", J. Appl. Comput. Mech., https://doi.org/10.22055/jacm.2023.42998.4000.
  6. Al-Rousan, R.Z. and Alnemrawi, B.R. (2023c), "Punching shear code provisions examination against the creation of an opening in existed RC flat slab of various sizes and locations", Structures, 49, 875-888. https://doi.org/10.1016/j.istruc.2023.02.007.
  7. Al-Rousan, R.Z. and Alnemrawi, B.R. (2024b), "Accurate theoretical modeling and code prediction of the punching shear failure capacity of reinforced concrete slabs", Steel Compos. Struct., 52(4), 419. https://doi.org/10.12989/scs.2024.52.4.419.
  8. Alnemrawi, B.R., Al-Rousan, R.Z. and Ababneh, A.N. (2024a), "The role of CFRP strengthening in improving the punching shear behavior of heat-damaged flat slabs with openings of different sizes and locations", Eng. Fail. Anal., 160, 108208. https://doi.org/10.1016/j.engfailanal.2024.108208.
  9. Alnemrawi, B.R., Al-Rousan, R.Z. and Ababneh, A.N. (2024b), "The structural behavior of heat-damaged flat slabs with openings of different sizes and locations", Arab. J. Sci. Eng., 49(4), 5403-5430. https://doi.org/10.1007/s13369-023-08411-6.
  10. Alrousan, R.Z. and Alnemrawi, B.R. (2022a), "The influence of concrete compressive strength on the punching shear capacity of reinforced concrete flat slabs under different opening configurations and loading conditions", Structures, 44, 101-119. https://doi.org/10.1016/j.istruc.2022.07.091.
  11. Alrousan, R.Z. and Alnemrawi, B.R. (2022b), "Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions", Case Studies Construct. Mater., 17, e01508. https://doi.org/10.1016/j.cscm.2022.e01508.
  12. Annerel, E., Taerwe, L., Merci, B., Jansen, D., Bamonte, P. and Felicetti, R. (2013), "Thermo-mechanical analysis of an underground car park structure exposed to fire", Fire Safety J., 57, 96-106. https://doi.org/10.1016/j.firesaf.2012.07.006.
  13. ASTM (2001), STM E119: Standard Test Methods for Fire Tests of Building Construction and Materials.
  14. British Standard Institute BS-476-21 (1953), "Fire tests on building materials and structures", 476(6).
  15. Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs-a detailed experimental study", Steel Compos. Struct., 11(3), 233-250. https://doi.org/10.12989/scs.2011.11.3.233.
  16. Emori, K. (2003), "Strength and structural barrier function of steel channel-reinforced concrete composite slabs", Steel Compos. Struct., 3(4), 243-260. https://doi.org/10.12989/scs.2003.3.4.243.
  17. Evarts, B. and Stein, G.P. (2020), US Fire Department Profile 2018, National Fire Protection Association Quincy, MA, USA.
  18. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  19. Genikomsou, A.S. and Polak, M.A. (2016), "Finite-element analysis of reinforced concrete slabs with punching shear reinforcement", J. Struct. Eng., 142(12), 04016129. doi:10.1061/(ASCE)ST.1943-541X.0001603.
  20. Genikomsou, A.S. and Polak, M.A. (2017), "3D finite element investigation of the compressive membrane action effect in reinforced concrete flat slabs", Eng. Struct., 136, 233-244. https://doi.org/10.1016/j.engstruct.2017.01.024.
  21. George, S.J. and Tian, Y. (2012), "Structural performance of reinforced concrete flat plate buildings subjected to rire", Int. J. Concrete Struct. Mater., 6(2), 111-121. https://doi.org/10.1007/s40069-012-0011-2.
  22. Hsu, T.T. (1994), "Unified theory of reinforced concrete-A summary", Structural engineering and mechanics: An international journal. 2(1), 1-16.
  23. Institution, B.S. (2005), Eurocode 2: Design of Concrete Structures-Part 1-2: General Rules-Structural Fire Design, British Standards Institution.
  24. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of Concrete Structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  25. LennonTom (2011), Structural Fire Engineering Design, ICE Publishing
  26. Lie, T.T. and Williams-Leir, G. (1979), "Factors affecting temperature of fire-exposed concrete slabs", Fire Mater., 3(2), 74-79. https://doi.org/10.1002/fam.810030204.
  27. Lopes, E. and Simoes, R. (2008), "Experimental and analytical behaviour of composite slabs", Steel Compos. Struct,. 8(5), 361-388. https://doi.org/10.12989/scs.2008.8.5.361.
  28. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  29. Marques, M.G., Liberati, E.A.P., Pimentel, M.J., de Souza, R.A. and Trautwein, L.M. (2020), "Nonlinear finite element analysis (NLFEA) of reinforced concrete flat slabs with holes", Structures. 27, 1-11. https://doi.org/10.1016/j.istruc.2020.05.004.
  30. Moss, P.J., Dhakal, R.P., Wang, G. and Buchanan, A.H. (2008), "The fire behaviour of multi-bay, two-way reinforced concrete slabs", Eng. Struct., 30(12), 3566-3573. https://doi.org/10.1016/j.engstruct.2008.05.028.
  31. Mostofinejad, D., Jafarian, N., Naderi, A., Mostofinejad, A. and Salehi, M. (2020), "Effects of openings on the punching shear strength of reinforced concrete slabs", Structures. 25, 760-773. https://doi.org/10.1016/j.istruc.2020.03.061.
  32. Ospina, C.E., Birkle, G. and Widianto (2012), Databank of Concentric Punching Shear Tests of Two-Way Concrete Slabs without Shear Reinforcement at Interior Supports,
  33. P. Bamonte, R.F. and Gambarova, P.G. (2009), "Punching shear in fire-damaged reinforced concrete slabs", ACI Symposium Publication, 265, 345-366. https://doi.org/10.14359/51663303.
  34. Peng, Z., Orton, S.L., Liu, J. and Tian, Y. (2017), "Experimental study of dynamic progressive collapse in flat-plate buildings subjected to exterior column removal", J. Struct. Eng., 143(9), 04017125. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001865.
  35. Peng, Z., Orton, S.L., Liu, J. and Tian, Y. (2018), "Experimental study of dynamic progressive collapse in flat-plate buildings subjected to an interior column removal", J. Struct. Eng., 144(8), 04018094. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002106.
  36. RILEM, T.C.2.H. (2007), "Recommendation of RILEM TC 200-HTC: mechanical concrete properties at high temperatures? modelling and applications", Mater. Struct., 40(9), 855-864.
  37. Sanchez, L., Gutierrez-Solana, F. and Pesquera, D. (2004), "Fatigue behaviour of punched structural plates", Eng. Fail. Anal., 11(5), 751-764. https://doi.org/10.1016/j.engfailanal.2003.10.002.
  38. Saravanan, M., Marimuthu, V., Prabha, P., Arul Jayachandran, S. and Datta, D. (2012), "Experimental investigations on composite slabs to evaluate longitudinal shear strength", Steel Compos. Struct., 13(5), 489-500. https://doi.org/10.12989/scs.2012.13.5.489.
  39. Shu, J., Fall, D., Plos, M., Zandi, K. and Lundgren, K. (2015), "Development of modelling strategies for two-way RC slabs", Eng. Struct., 101, 439-449. https://doi.org/10.1016/j.engstruct.2015.07.003.
  40. Wang, W.-Y., Li, G.-Q. and Kodur, V. (2013), "Approach for modeling fire insulation damage in steel columns", J. Struct. Eng., 139(4), 491-503. https://doi-org/10.1061/(ASCE)ST.1943-541X.0000688.
  41. Wang, Y.C. and Moore, D.B. (1995), "Steel frames in fire: Analysis", Eng. Struct., 17(6), 462-472. https://doi.org/10.1016/0141-0296(95)00047-B.
  42. Yankelevsky, D.Z., Karinski, Y.S., Brodsky, A. and Feldgun, V.R. (2021), "Dynamic punching shear of impacting RC flat slabs with drop panels", Eng. Fail. Anal., 129, 105682. https://doi.org/10.1016/j.engfailanal.2021.105682.
  43. Zaharia, R., Vulcu, C., Vassart, O., Gernay, T. and Franssen, J.-M. (2013), "Numerical analysis of partially fire protected composite slabs", Steel Compos. Struct., 14(1), 21-39. https://doi.org/10.12989/scs.2013.14.1.0219.
  44. ISO 834-1 (1999), Fire-Resistance Tests-Elements of Building Construction, Part 1: General Requirements.
  45. ACI 216.1-97 (1997), Standard Method for Determining Fire Resistance of Concrete and Masonry Construction Assemblies.