DOI QR코드

DOI QR Code

Nonlinear low-velocity impact of graphene platelet-reinforced metal foam beam with geometrical imperfection

  • Yi-Han Cheng (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2023.12.23
  • Accepted : 2024.09.04
  • Published : 2024.09.25

Abstract

The impact problem of imperfect beams is crucial in engineering fields such as water conservancy and transportation. In this paper, the low velocity impact of graphene reinforced metal foam beams with geometric defects is studied for the first time. Firstly, an improved Hertz contact theory is adopted to construct an accurate model of the contact force during the impact process, while establishing the initial conditions of the system. Subsequently, the classical theory was used to model the defective beam, and the motion equation was derived using Hamilton's principle. Then, the Galerkin method is applied to discretize the equation, and the Runge Kutta method is used for numerical analysis to obtain the dynamic response curve. Finally, convergence validation and comparison with existing literature are conducted. In addition, a detailed analysis was conducted on the sensitivity of various parameters, including graphene sheet (GPL) distribution pattern and mass fraction, porosity distribution type and coefficient, geometric dimensions of the beam, damping, prestress, and initial geometric defects of the beam. The results revealed a strong inhibitory effect of initial geometric defects on the impact response of beams.

Keywords

References

  1. Abdelrahman, A.A., Shanab, R.A., Esen, I. and Eltaher, M.A. (2022), "Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory", Steel Compos. Struct., 44(2), 241-256. https://doi.org/10.12989/scs.2022.44.2.241.
  2. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  3. Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
  4. Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J. W., Wadley, H.N.G. and Delale, F. (2001), "Metal foams: A design guide", Appl. Mech. Rev., 54(6), B105-B106. https://doi.org/10.1115/1.1421119.
  5. Assie, A.E., Mohamed, S.A., Abo-bakr, R.M., Mohamed, N. and Eltaher, M.A. (2024), "Neutral surface effect on nonlinear response of BDFG porous higher order plate rested on elastic foundations", Acta Mechanica, 1-21. https://doi.org/10.1007/s00707-023-03849-z.
  6. Biener, J., Wittstock, A., Zepeda-Ruiz, L.A., Biener, M.M., Zielasek, V., Kramer, D. and Hamza, A.V. (2009), "Surface-chemistry-driven actuation in nanoporous gold", Nature Mater., 8(1), 47-51. https://doi.org/10.1038/nmat2335.
  7. Chatterjee, S., Wang, J.W., Kuo, W.S., Tai, N.H., Salzmann, C., Li, W.L. and Chu, B.T.T. (2012), "Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites", Chemical Phys. Lett., 531, 6-10. https://doi.org/10.1016/j.cplett.2012.02.006.
  8. Chen, D., Yang, J., Schneider, J., Kitipornchai, S. and Zhang, L. (2022), "Impact response of inclined self-weighted functionally graded porous beams reinforced by graphene platelets", ThinWall. Struct., 179, 109501. https://doi.org/10.1016/j.tws.2022.109501.
  9. Chen, X., Chen, L. and Lu, Y. (2021), "Imperfection sensitivity of nonlinear primary resonance behavior in bi-directional functionally graded porous material beam", Compos. Struct., 271, 114142. https://doi.org/10.1016/j.compstruct.2021.114142.
  10. Cho, J.R. (2022), "Buckling analysis of functionally graded plates resting on elastic foundation by natural element method", Steel Compos. Struct., 44(2), 157-167. https://doi.org/10.12989/scs.2022.44.2.157.
  11. Das, B., Prasad, K.E., Ramamurty, U. and Rao, C.N.R. (2009), "Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene", Nanotechnology, 20(12), 125705. https://doi.org/10.1088/0957-4484/20/12/125705.
  12. Eipakchi, H. and Nasrekani, F.M. (2022), "Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness", Steel Compos. Struct., 43(2), 241-256. https://doi.org/10.12989/scs.2022.43.2.241.
  13. Gan, L.L. and She, G.L. (2024a), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
  14. Gan, L.L. and She, G.L. (2024b), "Nonlinear transient response of magneto-electro-elastic cylindrical shells with initial geometric imperfection", Appl. Mathem. Modelling, 132, 166-186. https://doi.org/10.1016/j.apm.2024.04.049.
  15. Gao, M., Wang, G., Liu, J. and He, Z. (2023), "Wave propagation analysis in functionally graded metal foam plates with nanopores", Acta Mechanica, 234(4), 1733-1755. https://doi.org/10.1007/s00707-022-03442-w.
  16. Ghandourah, E.E., Daikh, A.A., Khatir, S., Alhawsawi, A.M., Banoqitah, E.M. and Eltaher, M.A. (2023), "A dynamic analysis of porous coated functionally graded nanoshells rested on viscoelastic medium", Mathematics, 11(10), 2407. https://doi.org/10.3390/math11102407.
  17. Hendi, A., Eltaher, M.A., Mohamed, S.A. and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
  18. Hirai, Y., Hamada, H. and Kim, J.K. (1998), "Impact response of woven glass-fabric composites-I.: Effect of fibre surface treatment", Compos. Sci. Technol., 58(1), 91-104. https://doi.org/10.1016/S0266-3538(97)00111-5.
  19. Huang, X., Qi, X., Boey, F. and Zhang, H. (2012), "Graphene-based composites", Chemical Soc. Rev., 41(2), 666-686. https://doi.org/10.1039/C1CS15078B.
  20. Jam, J.E. and Kiani, Y. (2015), "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 132, 35-43. https://doi.org/10.1016/j.compstruct.2015.04.045.
  21. Kakati, B.K., Ghosh, A. and Verma, A. (2013), "Efficient composite bipolar plate reinforced with carbon fiber and graphene for proton exchange membrane fuel cell", Int. J. Hydrogen Energy, 38(22), 9362-9369. https://doi.org/10.1016/j.ijhydene.2012.11.075.
  22. Li, Z.M. and Qiao, P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028.
  23. Lin, B., Zhu, B., Chen, B., Han, J. and Li, Y. (2022), "Nonlinear primary resonance behaviors of rotating FG-CNTRC beams with geometric imperfections", Aeros. Sci. Technol., 121, 107333. https://doi.org/10.1016/j.ast.2022.107333.
  24. Mohamed, S.A., Assie, A.E. and Eltaher, M.A. (2023), "Novel incremental procedure in solving nonlinear static response of 2D-FG porous plates", Thin-Wall. Struct., 189, 110779. https://doi.org/10.1016/j.tws.2023.110779.
  25. Mohamed, S.A., Assie, A.E., Eltaher, M.A., Abo-bakr, R.M. and Mohamed, N. (2024), "Nonlinear postbuckling and snap-through instability of movable simply supported BDFG porous plates rested on elastic foundations", Mech. Based Des. Struct. Machines, 1-28. https://doi.org/10.1080/15397734.2024.2328339.
  26. Park, H., Ahn, C., Jo, H., Choi, M., Kim, D.S., Kim, D.K. and Choe, H. (2014), "Large-area metal foams with highly ordered sub-micrometer-scale pores for potential applications in energy areas", Mater. Lett., 129, 174-177. https://doi.org/10.1016/j.matlet.2014.05.043.
  27. Sah, S.M., Thomsen, J.J. and Tcherniak, D. (2019), "Transverse vibrations induced by longitudinal excitation in beams with geometrical and loading imperfections", J. Sound Vib., 444, 152-160. https://doi.org/10.1016/j.jsv.2018.12.027.
  28. Seifoori, S. and Hajabdollahi, H. (2015), "Impact behavior of single-layered graphene sheets based on analytical model and molecular dynamics simulation", Appl. Surface Sci., 351, 565-572. https://doi.org/10.1016/j.apsusc.2015.05.114.
  29. She, G.L., Li, Y.P., He, Y.J. and Song, J.P. (2024), "Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection", Comput. Concrete, 33(3), 241-250. https://doi.org/10.12989/cac.2024.33.3.241.
  30. Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Archive Civil Mech. Eng., 24, 45. https://doi.org/10.1007/s43452-023-00846-w.
  31. Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aeros. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
  32. Song, J.P., She, G.L. and He, Y.J. (2024a), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
  33. Song, J.P., She, G.L. and He, Y.J. (2024b), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
  34. Staszak, N., Gajewski, T. and Garbowski, T. (2022), "Effective Stiffness of Thin-Walled Beams with Local Imperfections", Materials, 15(21), 7665. https://doi.org/10.3390/ma15217665.
  35. Tjong, S.C. (2013), "Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets", Mater. Sci. Eng. R: Reports, 74(10), 281-350. https://doi.org/10.1016/j.mser.2013.08.001.
  36. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aeros. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  37. Wang, Z.X., Xu, J. and Qiao, P. (2014), "Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates", Compos. Struct., 108, 423-434. https://doi.org/10.1016/j.compstruct.2013.09.024.
  38. Wedel-Heinen, J. (1991), "Vibration of geometrically imperfect beam and shell structures", Int. J. Solids Struct., 27(1), 29-47. https://doi.org/10.1016/0020-7683(91)90143-4.
  39. Xi, F. (2022), "Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets", Steel Compos. Struct., 44(1), 65-79. https://doi.org/10.12989/scs.2022.44.1.065.
  40. Yang, F.L., Wang, Y.Q. and Liu, Y. (2022), "Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates", Aeros. Sci. Technol., 123, 107496. https://doi.org/10.1016/j.ast.2022.107496.
  41. Yang, J., Wu, H., and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
  42. Yang, M. and Qiao, P. (2005a), "Higher-order impact modeling of sandwich structures with flexible core", Int. J. Solids Struct., 42(20), 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037.
  43. Yang, M. and Qiao, P. (2005b), "Nonlinear impact analysis of fully backed composite sandwich structures", Compos. Sci. Technol., 65(3-4), 551-562. https://doi.org/10.1016/j.compscitech.2004.08.006.
  44. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlinear Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
  45. Yee, K., Kankanamalage, U.M., Ghayesh, M.H., Jiao, Y., Hussain, S. and Amabili, M. (2022), "Coupled dynamics of axially functionally graded graphene nanoplatelets-reinforced viscoelastic shear deformable beams with material and geometric imperfections", Eng. Anal. Bound. Elements, 136, 4-36. https://doi.org/10.1016/j.enganabound.2021.12.017.
  46. Yilmaz, M., Ekrem, M. and Avci, A. (2024), "Impact resistance of composite to aluminum single lap joints reinforced with graphene doped nylon 6.6 nanofibers", Int. J. Adhesion Adhesives, 128, 103565. https://doi.org/10.1016/j.ijadhadh.2023.103565.
  47. Zhang, W., Guo, L. J., Wang, Y., Mao, J.J. and Yan, J. (2022), "Nonlinear low-velocity impact response of GRC beam with geometric imperfection under thermo-electro-mechanical loads", Nonlinear Dyn., 110(4), 3255-3272. https://doi.org/10.1007/s11071-022-07809-5.
  48. Zhang, Y.-W. and She, G.-L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlinear Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
  49. Zhang, Y.W. and She, G.L. (2024a), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
  50. Zhang, Y.W. and She, G.L. (2024c), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.
  51. Zhang, Y.W., She, G.L. and Eltaher, M.A. (2023), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aeros. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.
  52. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 27(1), 3-11. https://doi.org/10.1080/15376494.2018.1444216.
  53. Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.