DOI QR코드

DOI QR Code

Uncovering Candidate Pathogenicity Genes in Erwinia pyrifoliae YKB12327 via Tn5-insertion Mutagenesis

  • Hualin Nie (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Mi-Hyun Lee (Crop Protection Division, National Institute of Agricultural Science) ;
  • Sanghee Lee (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Seo-Rin Ko (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Young-Soo Hong (KRIBB School of Bioscience, Korea University of Science and Technology (UST)) ;
  • Jae Sun Moon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jun Myoung Yu (Department of Applied Biology, Chungnam National University) ;
  • Ah-Young Shin (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Suk-Yoon Kwon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2024.05.29
  • Accepted : 2024.07.26
  • Published : 2024.09.30

Abstract

Erwinia pyrifoliae is a gram-negative bacterial pathogen that commonly causes black shoot blight in pear and apple tree. Although the pathogenicity of this bacterial species is very similar to E. amylovora, there is no specific explanation of its pathogenic genes and mechanisms. In this study, our investigation into E. pyrifoliae pathogenicity involved generating seven YKB12327 mutant strains using Tn5 transposon mutagenesis. Observations revealed weakened growth rate and loss of pathogenicity in these mutants. Whole-genome sequencing and alignment analysis identified transposon insertions within the coding sequences of five strains and in the intergenic region of two strains. Annotation analysis elucidated genes directly or indirectly associated with pathogenicity. Notably, mutant strain MT16 displayed a transposon insertion mutation in the cyclic-di-GMP phosphodiesterase (pdeF) gene, a key player in bacterial signaling, governing microbial behavior and adaptation to environmental changes. Our findings provide insights into the genetic regulation of E. pyrifoliae pathogenicity, suggesting potential avenues for further research aimed at understanding and controlling this bacterial pathogen by targeting pdeF to mitigate apple black shoot blight disease.

Keywords

Acknowledgement

This work was supported by grants from the Agenda program (PJ015594) of the Rural Development Administration and the Korean Research Institute of Bioscience and Biotechnology Initiative Program. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Arroyo-Olarte, R. D., Bravo Rodriguez, R. and Morales-Rios, E. 2021. Genome editing in bacteria: Crispr-cas and beyond. Microorganisms 9: 844.
  2. Blackman, L. M., Cullerne, D. P. and Hardham, A. R. 2014. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 15: 785.
  3. Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M. et al. 2018. Ten things you should know about transposable elements. Genome Biol. 19: 199.
  4. Campbell, A. C., Robinson, R., Mena-Aguilar, D., Sobrado, P. and Tanner, J. J. 2020. Structural determinants of flavin dynamics in a class B monooxygenase. Biochemistry 59: 4609-4616.
  5. Davis, L., Young, K. and DiRita, V. 2008. Genetic manipulation of Campylobacter jejuni. Curr. Protoc. Microbiol. Chapter 8 : Unit 8A.2.1-8A.2.17.
  6. Dubin, M. J., Mittelsten Scheid, O. and Becker, C. 2018. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42: 23-29.
  7. Ebrahimi, V. and Hashemi, A. 2020. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: a review. Gene 753: 144813.
  8. Edmunds, A. C., Castiblanco, L. F., Sundin, G. W. and Waters, C. M. 2013. Cyclic Di-GMP modulates the disease progression of erwinia amylovora. J. Bacteriol. 195: 2155-2165.
  9. Feddersen, C. R., Wadsworth, L. S., Zhu, E. Y., Vaughn, H. R., Voigt, A. P., Riordan, J. D. et al. 2019. A simplified transposon mutagenesis method to perform phenotypic forward genetic screens in cultured cells. BMC Genomics 20: 497.
  10. Franceschini, S., Fedkenheuer, M., Vogelaar, N. J., Robinson, H. H., Sobrado, P. and Mattevi, A. 2012. Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases. Biochemistry 51: 7043-7045.
  11. Gao, P., Liu, Z. and Wen, J. 2020. Expression profiling of plant cell wall-degrading enzyme genes in Eucryptorrhynchus scrobiculatus midgut. Front. Physiol. 11: 1111.
  12. Ha, D.-G. and O'Toole, G. A. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a pseudomonas aeruginosa review. Microbiol. Spectr. 3: MB-0003-2014.
  13. Ham, H., Kim, K., Yang, S., Kong, H. G., Lee, M.-H., Jin, Y. J. et al. 2022. Discrimination and detection of Erwinia amylovora and Erwinia pyrifoliae with a single primer set. Plant Pathol. J. 38: 194-202.
  14. Hull, T. D., Ryu, M.-H., Sullivan, M. J., Johnson, R. C., Klena, N. T., Geiger, R. M. et al. 2012. Cyclic Di-GMP phosphodiesterases RmdA and RmdB are involved in regulating colony morphology and development in Streptomyces coelicolor. J. Bacteriol. 194: 4642-4651.
  15. Husna, A. U., Wang, N., Cobbold, S. A., Newton, H. J., Hocking, D. M., Wilksch, J. J. et al. 2018. Methionine biosynthesis and transport are functionally redundant for the growth and virulence of Salmonella Typhimurium. J. Biol. Chem. 293: 9506-9519.
  16. Jenal, U., Reinders, A. and Lori, C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15: 271-284.
  17. Kamber, T., Smits, T. H. M., Rezzonico, F. and Duffy, B. 2012. Genomics and current genetic understanding of Erwinia amylovora and the fire blight antagonist Pantoea vagans. Trees 26: 227-238.
  18. Kawakami, K., Largaespada, D. A. and Ivics, Z. 2017. Transposons as tools for functional genomics in vertebrate models. Trend Genet. 33: 784-801.
  19. Kharadi, R. R., Selbmann, K. and Sundin, G. W. 2022. A complete twelve-gene deletion null mutant reveals that cyclic di-GMP is a global regulator of phase-transition and host colonization in Erwinia amylovora. PLoS Pathog. 18: e1010737.
  20. Kim, W.-S., Gardan, L., Rhim, S.-L. and Geider, K. 1999. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int. J. Syst. Bacteriol. 49: 899-906.
  21. Kim, W.-S., Hildebrand, M., Jock, S. and Geider, K. 2001. Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora. Microbiology 147: 2951-2959.
  22. Krol, E., Schaper, S. and Becker, A. 2020. Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia. Biol. Chem. 401: 1335-1348.
  23. Kube, M., Migdoll, A. M., Gehring, I., Heitmann, K., Mayer, Y., Kuhl, H. et al. 2010. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11: 393.
  24. Lee, G. M., Ko, S., Oh, E.-J., Song, Y.-R., Kim, D. and Oh, C.-S. 2020. Comparative genome analysis reveals natural variations in the genomes of Erwinia pyrifoliae, a black shoot blight pathogen in apple and pear. Plant Pathol. J. 36: 428-439.
  25. Lee, G. M., Oh, E.-J., Ko, S., Park, J., Park, D. H., Kim, D. et al. 2018. Draft genome sequence of a bacterial plant pathogen Erwinia pyrifoliae strain EpK1/15 isolated from an apple twig showing black shoot blight. Korean J. Microbiol. 54: 69-70.
  26. Lin, T., Troy, E. B., Hu, L. T., Gao, L. and Norris, S. J. 2014. Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Front. Cell. Infect. Microbiol. 4: 63.
  27. Llop, P., Barbe, S. and Lopez, M. M. 2012. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees. Trees 26: 31-46.
  28. Munoz-Lopez, M. and Garcia-Perez, J. L. 2010. DNA transposons: nature and applications in genomics. Curr. Genomics 11: 115-128.
  29. Naorem, S. S., Han, J., Zhang, S. Y., Zhang, J., Graham, L. B., Song, A. et al. 2018. Efficient transposon mutagenesis mediated by an IPTG-controlled conditional suicide plasmid. BMC Microbiol. 18: 158.
  30. Orlando, M., Buchholz, P. C. F., Lotti, M. and Pleiss, J. 2021. The GH19 engineering database: sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One 16: e0256817.
  31. Pal, C., Bengtsson-Palme, J., Kristiansson, E. and Larsson, D. G. J. 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16: 964.
  32. Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34: 445-450.
  33. Penkov, D., Zubkova, E. and Parfyonova, Y. 2023. Tn5 DNA transposase in multi-omics research. Methods Protoc. 6: 24.
  34. Rafiei, V., Velez, H. and Tzelepis, G. 2021. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. Int. J. Mol. Sci. 22: 9359.
  35. Reznikoff, W. S. 2008. Transposon Tn5. Annu. Rev. Genet. 42: 269-286.
  36. Rhim, S.-H., Volksch, B., Gardan, L., Paulin, J.-P., Langlotz, C., Kim, W.-S. et al. 1999. Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees. Plant Pathol. 48: 514-520.
  37. Romero Victorica, M., Soria, M. A., Batista-Garcia, R. A., Ceja-Navarro, J. A., Vikram, S., Ortiz, M. et al. 2020. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci. Rep. 10: 3864.
  38. Sanchez, M. R., Payen, C., Cheong, F., Hovde, B. T., Bissonnette, S., Arkin, A. P. et al. 2019. Transposon insertional mutagenesis in Saccharomyces uvarum reveals trans-acting effects influencing species-dependent essential genes. Genome Res. 29: 396-406.
  39. Sato, S., Arimura, Y., Kujirai, T., Harada, A., Maehara, K., Nogami, J. et al. 2019. Biochemical analysis of nucleosome targeting by Tn5 transposase. Open Biol. 9: 190116.
  40. Shin, D.-S., Heo, G.-I., Son, S.-H., Oh, C.-S., Lee, Y.-K. and Cha, J.-S. 2018. Development of an improved loop-mediated isothermal amplification assay for on-site diagnosis of fire blight in apple and pear. Plant Pathol. J. 34: 191-198.
  41. Smits, T. H. M., Rezzonico, F., Kamber, T., Blom, J., Goesmann, A., Frey, J. E. et al. 2010. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol. Plant Microbe Interact. 23: 384-393.
  42. Thapa, S. P., Park, D. H., Kim, W. S., Choi, B. S., Lim, J. S., Choi, I. Y. et al. 2013. Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias. Genome 56: 83-90.
  43. Thompson, D. W., Casjens, S. R., Sharma, R. and Grose, J. H. 2019. Genomic comparison of 60 completely sequenced bacteriophages that infect Erwinia and/or Pantoea bacteria. Virology 535: 59-73.
  44. Valentini, M. and Filloux, A. 2016. Biofilms and Cyclic di-GMP (cdi-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291: 12547-12555.
  45. van Opijnen, T. and Camilli, A. 2013. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat. Rev. Microbiol. 11: 435-442.
  46. Wetmore, K. M., Price, M. N., Waters, R. J., Lamson, J. S., He, J., Hoover, C. A. et al. 2015. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio 6: e00306-e315.
  47. Zhang, X., Wang, T., Zhou, W., Jia, X. and Wang, H. 2013. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb. Cell Fact. 12: 41.