DOI QR코드

DOI QR Code

Optimization of Conditions for Conidial Production in Bipolaris oryzae Isolated from Rice

벼 깨씨무늬병 Bipolaris oryzae의 포자 형성 방법 개선

  • Seol-Hwa Jang (Department of Plant Medicine, Sunchon National University) ;
  • Seyeon Kim (Department of Plant Medicine, Sunchon National University) ;
  • Shinhwa Kim (Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Hyunjung Chung (Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Sook-Young Park (Department of Plant Medicine, Sunchon National University)
  • 장설화 (순천대학교 식물의학과) ;
  • 김서연 (순천대학교 식물의학과) ;
  • 김신화 (국립식량과학원 작물기초기반과) ;
  • 정현정 (국립식량과학원 작물기초기반과) ;
  • 박숙영 (순천대학교 식물의학과)
  • Received : 2024.07.27
  • Accepted : 2024.08.20
  • Published : 2024.09.30

Abstract

Conidial production is a critical factor in testing pathogenicity and studying the physiology and ecology of fungal pathogens. Therefore, selecting an appropriate condition and medium for consistent conidia production is essential. In this study, we investigated light conditions and suitable medium conditions using the slide culture method to establish optimal conditions for continuous spore acquisition of Bipolaris oryzae. Primarily, we observed conidial production using two B. oryzae isolates, CM23-042 and 23CM10, under two different light conditions: (1) consistent near-ultraviolet (NUV) with fluorescent light, and (2) a 12-hr shift of the NUV-dark cycle. Secondly, we examined conidial formation under seven different media on potato dextrose agar (PDA), V8-Juice agar, minimal medium (MM), sucrose-proline agar (SPA), rabbit food agar (RFA), rice bran agar (RBA), and rice leaf agar (RLA). Under consistent NUV light with fluorescent conditions, conidia were induced in both isolates, whereas conidia were not produced under other conditions after 7 days post-inoculation (dpi). Moreover, B. oryzae isolate CM23-042 produced the highest number of conidia in MM, while isolate 23CM10 yielded the highest number of conidia in PDA after 7 dpi. In summary, our data demonstrated that the consistent NUV light with fluorescent conditions were most conducive for conidia induction in B. oryzae. The selection of a medium for conidiation may vary depending on the B. oryzae isolates, but using MM and PDA or SPA and RFA medium could be effective for spore induction. These findings will contribute to improving conidiation according to the characteristics of collected isolates of B. oryzae.

식물 병원성 곰팡이의 포자는 병원성을 테스트하고 병원균의 생리 및 생태를 연구하는 데 중요한 역할을 한다. 따라서 안정적인 포자 생산을 위해서는 적절한 빛과 배지 조건은 필수적이다. 본 연구에서는 Bipolaris oryzae의 지속적인 포자 확보를 위한 조건을 확립하기 위해 슬라이드 배양법을 통해 빛 조건과 적합한 배지 조건을 조사하였다. 첫째, Bipolaris oryzae 균주 CM23-042와 23CM10을 사용하여 두 가지 서로 다른 빛 조건을 설정하였다. 첫 번째 조건은 지속적인 형광등과 근 자외선(NUV) 하에서의 포자 형성이었고, 두 번째 조건은 NUV와 암 상태를 12시간 주기로 교대로 바꿔주는 방식이었다. 둘째, 감자 포도당 한천(PDA) 배지, V8-Juice 한천 배지, 최소 배지(MM), sucrose-proline 한천 배지(SPA), 토끼 풀 한천 배지(RFA), 쌀겨 한천 배지(RBA), 벼 잎 한천 배지(RLA) 등 7가지 서로 다른 배지에서 포자 형성을 관찰하였다. 접종 후 7일이 경과한 결과, 실험에 사용된 균주 CM23-042와 23CM10은 PDA 배지에서 지속적인 형광등과 근 자외선(NUV) 조건에서만 포자 형성이 유도되었으며, 다른 조건에서는 포자가 형성되지 않았다. 또한, B. oryzae CM23-042 균주는 MM에서 가장 많은 포자를 형성한 반면, 23CM10 균주는 PDA에서 가장 많은 포자를 형성하였다. 종합적으로, 본 실험에서는 지속적인 형광등과 근 자외선을 동시에 조사하는 조건이 포자 유도에 가장 적합하다는 결과를 얻었다. 동시에, 포자 형성을 위한 배지 선택은 B. oryzae 균주에 따라 다를 수 있으나, MM과 PDA 또는 SPA와 RFA 배지의 적용이 포자 유도에 효과적일 것으로 예상된다. 본 연구 결과는 B. oryzae의 수집 균주들의 특성에 맞춰 포자 형성을 향상시키는데 기여할 것이다.

Keywords

Acknowledgement

This work was supported by the Rural Development Administration of Korea (RS-2024-00400211).

References

  1. Agrios, G. N. 2005. Plant Patholgy. 5th ed. Elsevier Academic Press, Amsterdam, Nederlands.
  2. Bandumula, N. 2018. Rice production in Asia: key to global food security. Proc. Natl. Acad. Sci. India, Sect. B Biol. Sci. 88: 1323-1328.
  3. Barnwal, M. K., Kotasthane, A., Magculia, N., Mukherjee, P. K., Savary, S. et al. 2013. A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur. J. Plant Pathol. 136: 443-457.
  4. Basavaraj, K., Jasudasu, G. S., Prakasam, V., Ladhalakshmi, D., Kannan, C., Krishnaveni, D. et al. 2023. Enhanced sporulation by different light and nutritional sources in Bipolaris oryzae causing brown spot disease of rice. J. Environ. Biol. 44: 380-389.
  5. Choudhury, F. A., Jabeen, N., Haider, M. S. and Hussain, R. 2019. Comparative analysis of leaf spot disease in rice belt of Punjab, Pakistan. Adv. Life Sci. 6: 76-80.
  6. Correll, J. C., Klittich, C. J. R. and Leslie, J. F. 1987. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77: 1640-1646.
  7. Dhingra, O. D. and Sinclair, J. B. 1995. Basic plant pathology methods. 2nd ed. CRC Press, Boca Raton, FL, USA.
  8. Estrada, A. B. 1984. Selection of differential varieties for race study of Helminthosporium oryzae. University of the Philippines Los Banos, Los Banos, Philippines.
  9. Guan, L. 2009. Preparation of future weather data to study the impact of climate change on buildings. Build. Environ. 44: 793-800.
  10. Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12: 329-339.
  11. Hau, F. C. and Rush, M. C. 1980. A system for inducing sporulation of Bipolaris oryzae. Plant Dis. 64: 788-789.
  12. International Rice Research Institute (IRRI). 2022. World Rice Statistics. IRRI, Los Banos, Philippines.
  13. Kamal, M. M. and Mia, M. A. T. 2009. Diversity and pathogenicity of the rice brown spot pathogen, Bipolaris oryzae (Breda de Haan) Shoem. in Bangladesh assessed by genetic fingerprint analysis. Bangladesh J. Bot. 38: 119-125.
  14. Kulkarni, S., Ramakrishnan, K. and Hegde, R. K. 1980. Induction of sporulation in Drechslera oryzae. Curr. Res. 9: 178-179.
  15. Leach, C. M. 1961. The sporulation of Helminthosporium oryzae as affected by exposure to near ultraviolet radiation and dark periods. Can. J. Bot. 39: 705-715.
  16. Ou, S. H. 1985. Rice Disease. 2nd ed. CMI, Kew, England.
  17. Padmanabhan, S. Y. 1973. The great bengal famine. Ann. Rev. Phytopathol. 11: 11-24.
  18. Saha, S., Garg, R., Biswas, A. and Rai, A. B. 2015. Bacterial diseases of rice: an overview. J. Pure Appl. Microbiol. 9: 725-736.
  19. Savary, S., Nelson, A., Sparks, A. H., Willocquet, L., Duveiller, E., Mahuku, G. et al. 2011. International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis. 95: 1204-1216.
  20. Shoemaker, R. A. 1962. Drechslera ito. Can. J. Bot. 40: 809-836.
  21. Sunder, S., Singh, R. and Agarwal, R. 2014. Brown spot of rice: an overview. Indian Phytopath. 67: 201-215.
  22. Talbot, N. J., Ebbole, D. J. and Hamer, J. E. 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5: 1575-1590.
  23. Webster, R. K. and Gunnell, P. S. 1992. Compendium of rice diseases. American Phytopathological Society, St. Paul, MN, USA.
  24. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, New York, NY, USA. 315-322 pp.