Acknowledgement
This work was supported by grant from Inje University, 2023 (No. 20230017).
References
- Chen S, Cui J, Chen H, Yu B, Long S. Recent progress in degradation of membrane proteins by PROTACs and alternative targeted protein degradation techniques. Eur J Med Chem. 2023;262:115911. https://doi.org/10.1016/j.ejmech.2023.115911
- Paudel RR, Lu D, Roy Chowdhury S, Monroy EY, Wang J. Targeted protein degradation via lysosomes. Biochemistry. 2023;62:564-579. https://doi.org/10.1021/acs.biochem.2c00310
- Crunkhorn S. Developing antibody-based PROTACs. Nat Rev Drug Discov. 2022;21:795. https://doi.org/10.1038/d41573-022-00159-2
- Bekes M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181-200. https://doi.org/10.1038/s41573-021-00371-6
- Li X, Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol. 2020;13:50. https://doi.org/10.1186/s13045-020-00885-3
- Ma A, Stratikopoulos E, Park KS, Wei J, Martin TC, Yang X, et al. Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol. 2020;16:214-222. https://doi.org/10.1038/s41589-019-0421-4
- Jeong Y, Kim SB, Yang CE, Yu MS, Choi WS, Jeon Y, et al. Overcoming the therapeutic limitations of EZH2 inhibitors in Burkitt's lymphoma: a comprehensive study on the combined effects of MS1943 and Ibrutinib. Front Oncol. 2023;13:1252658. https://doi.org/10.3389/fonc.2023.1252658
- Xie H, Xu W, Liang J, Liu Y, Zhuo C, Zou X, et al. Design, synthesis and evaluation of EZH2-based PROTACs targeting PRC2 complex in lymphoma. Bioorg Chem. 2023;140:106762. https://doi.org/10.1016/j.bioorg.2023.106762
- Kim SB, Yang CE, Jeong Y, Yu M, Choi WS, Lim JY, et al. Dual targeting of EZH2 degradation and EGFR/HER2 inhibition for enhanced efficacy against Burkitt's lymphoma. Cancers (Basel). 2023;15:4472. https://doi.org/10.3390/cancers15184472
- Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13:117. https://doi.org/10.1186/s13045-020-00951-w
- Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 2022;13:6350. https://doi.org/10.1038/s41467-022-34209-5
- Li J, Zhu Z, Zhu Y, Li J, Li K, Zhong W. METTL3-mediated m6A methylation of C1qA regulates the Rituximab resistance of diffuse large B-cell lymphoma cells. Cell Death Discov. 2023;9:405. https://doi.org/10.1038/s41420-023-01698-2
- Meng S, Xia Y, Li M, Wu Y, Wang D, Zhou Y, et al. NCBP1 enhanced proliferation of DLBCL cells via METTL3-mediated m6A modification of c-Myc. Sci Rep. 2023;13:8606. https://doi.org/10.1038/s41598-023-35777-2
- Li M, Ye J, Xia Y, Li M, Li G, Hu X, et al. METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia. 2022;36:2586-2595. https://doi.org/10.1038/s41375-022-01696-w
- Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597-601. https://doi.org/10.1038/s41586-021-03536-w
- Ferry JA. Burkitt's lymphoma: clinicopathologic features and differential diagnosis. Oncologist. 2006;11:375-383. https://doi.org/10.1634/theoncologist.11-4-375
- Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med. 2014;4:a014282. https://doi.org/10.1101/cshperspect.a014282
- Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell. 2002;13:978-988. https://doi.org/10.1091/mbc.01-05-0272
- Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem. 1999;274:22932- 22940. https://doi.org/10.1074/jbc.274.33.22932
- Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27 Suppl 1(Suppl 1):S71-S83. https://doi.org/10.1038/onc.2009.45
- Han CW, Lee HN, Jeong MS, Park SY, Jang SB. Structural basis of the p53 DNA binding domain and PUMA complex. Biochem Biophys Res Commun. 2021;548:39-46. https://doi.org/10.1016/j.bbrc.2021.02.049
- Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front Pharmacol. 2021;12:692574. https://doi.org/10.3389/fphar.2021.692574
- Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Ther. 2017;174:138-144. https://doi.org/10.1016/j.pharmthera.2017.02.027
- Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, et al. An overview of PROTACs: a promising drug discovery paradigm. Mol Biomed. 2022;3:46. https://doi.org/10.1186/s43556-022-00112-0
- Bricelj A, Steinebach C, Kuchta R, Gutschow M, Sosic I. E3 ligase ligands in successful PROTACs: an overview of syntheses and linker attachment points. Front Chem. 2021;9:707317. https://doi.org/10.3389/fchem.2021.707317
- Dale B, Cheng M, Park KS, Kaniskan Hu, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021;21:638-654. https://doi.org/10.1038/s41568-021-00365-x
- Velez J, Dale B, Park KS, Kaniskan Hu, Yu X, Jin J. Discovery of a novel, highly potent EZH2 PROTAC degrader for targeting noncanonical oncogenic functions of EZH2. Eur J Med Chem. 2024;267:116154. https://doi.org/10.1016/j.ejmech.2024.116154
- Liu Z, Hu X, Wang Q, Wu X, Zhang Q, Wei W, et al. Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for targeting the noncatalytic activity of EZH2. J Med Chem. 2021;64:2829-2848. https://doi.org/10.1021/acs.jmedchem.0c02234
- Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev. 2022;51:8216-8257. https://doi.org/10.1039/d2cs00387b
- An S, Fu L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018;36:553-562. https://doi.org/10.1016/j.ebiom.2018.09.005