DOI QR코드

DOI QR Code

Synergistic Effects of Combined PROTAC-based EZH2 Degrader and METTL3 Inhibitor in Burkitt's Lymphoma

버킷림프종에서 EZH2 분해제와 METTL3 억제제 병용의 상승 항암 효과

  • Minseo YU (Department of Biomedical Laboratory Science, Inje University) ;
  • Ra Eun KIM (Department of Biomedical Laboratory Science, Inje University) ;
  • Yurim JEONG (Department of Biomedical Laboratory Science, Inje University) ;
  • Hyewon JANG (Department of Biomedical Laboratory Science, Inje University) ;
  • Se Been KIM (Department of Biomedical Laboratory Science, Inje University) ;
  • Jung-Yeon LIM (Department of Biomedical Laboratory Science, Inje University)
  • 유민서 (인제대학교 임상병리학과) ;
  • 김라은 (인제대학교 임상병리학과) ;
  • 정유림 (인제대학교 임상병리학과) ;
  • 장혜원 (인제대학교 임상병리학과) ;
  • 김세빈 (인제대학교 임상병리학과) ;
  • 임정연 (인제대학교 임상병리학과)
  • Received : 2024.07.26
  • Accepted : 2024.09.02
  • Published : 2024.09.30

Abstract

EZH2 is a methyltransferase that is a critical target for lymphoma treatment. However, it is not yet widely used in clinical settings. PROteolysis TArgeting Chimeras (PROTACs) represent a novel therapeutic strategy aimed at eliminating proteins that have been a challenging target using conventional small molecules. In our previous research, we compared the small molecules-based EZH2 inhibitor used in clinical settings with a PROTAC-based EZH2 degrader. We found that the PROTAC-based degrader was significantly more effective. Building on this, we further investigated the effects of combining the PROTAC-based EZH2 degrader (dEZH2) with a METTL3 inhibitor, both of which have demonstrated effectiveness in inhibiting cell proliferation and inducing apoptosis in Burkitt's lymphoma. Using the CCK-8 assay, we found that both drugs, alone and in combination, significantly inhibited Daudi and Ramos cell growth in a dose-dependent manner. The combined treatment markedly suppressed cell proliferation and induced apoptosis, as confirmed by Annexin V/PI staining. Our results revealed G2/M phase arrest with a significant decrease in the G0/G1 phase by flow cytometry. Our study also showed increased levels of cleaved PARP, cleaved caspase-3, tumor protein p53 (TP53), and PUMA using the western blot technique, indicating enhanced p53-dependent apoptosis. Our findings suggest that the combination therapy of dEZH2 and iMETTL3 could be a promising approach in the treatment of Burkitt's lymphoma.

PROteolysis TArgeting Chimeras (PROTACs)은 기존의 저분자(small moleule)로는 타겟팅이 어려웠던 단백질을 제거하기 위한 새로운 치료 전략을 제공한다. EZH2는 림프종 치료의 중요한 타겟인 메틸트랜스퍼라제(methyltransferase)이지만, 임상에서 널리 사용되지 않는다. 이전 연구에서 우리는 임상에서 사용되는 EZH2 억제제와 PROTAC 기반의 EZH2 분해제를 비교했으며, PROTAC 기반 분해제가 훨씬 더 효과적임을 확인했다. 이를 바탕으로, 우리는 PROTAC 기반의 EZH2 분해제와 기존 림프종 치료제인 METTL3 억제제를 병용하여 버킷림프종 세포의 증식과 세포 사멸에 미치는 영향을 조사했다. CCK-8 분석을 통해 두 약물이 단독 및 병용 처리 시 농도 의존적으로 Daudi 및 Ramos 세포 성장을 유의미하게 억제하는 것을 확인했다. 병용 치료는 세포 증식을 현저히 억제하고, annexin V/PI 염색을 통해 세포 사멸을 유도하는 것으로 확인되었다. 유세포 분석에서는 G0/G1 단계의 감소와 함께 G2/M 단계에서의 세포 주기 정지를 보였다. 웨스턴 블럿(western blot) 분석에서는 cleaved PARP, cleaved caspase-3, TP53 및 PUMA의 증가된 수준을 나타내어 p53 의존적인 세포 사멸이 강화됨을 증명했다. 우리는 이 연구 결과가 이 병용 요법이 버킷림프종 치료에 유망한 접근법임을 제안한다.

Keywords

Acknowledgement

This work was supported by grant from Inje University, 2023 (No. 20230017).

References

  1. Chen S, Cui J, Chen H, Yu B, Long S. Recent progress in degradation of membrane proteins by PROTACs and alternative targeted protein degradation techniques. Eur J Med Chem. 2023;262:115911. https://doi.org/10.1016/j.ejmech.2023.115911 
  2. Paudel RR, Lu D, Roy Chowdhury S, Monroy EY, Wang J. Targeted protein degradation via lysosomes. Biochemistry. 2023;62:564-579. https://doi.org/10.1021/acs.biochem.2c00310 
  3. Crunkhorn S. Developing antibody-based PROTACs. Nat Rev Drug Discov. 2022;21:795. https://doi.org/10.1038/d41573-022-00159-2 
  4. Bekes M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181-200. https://doi.org/10.1038/s41573-021-00371-6 
  5. Li X, Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol. 2020;13:50. https://doi.org/10.1186/s13045-020-00885-3 
  6. Ma A, Stratikopoulos E, Park KS, Wei J, Martin TC, Yang X, et al. Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol. 2020;16:214-222. https://doi.org/10.1038/s41589-019-0421-4 
  7. Jeong Y, Kim SB, Yang CE, Yu MS, Choi WS, Jeon Y, et al. Overcoming the therapeutic limitations of EZH2 inhibitors in Burkitt's lymphoma: a comprehensive study on the combined effects of MS1943 and Ibrutinib. Front Oncol. 2023;13:1252658. https://doi.org/10.3389/fonc.2023.1252658 
  8. Xie H, Xu W, Liang J, Liu Y, Zhuo C, Zou X, et al. Design, synthesis and evaluation of EZH2-based PROTACs targeting PRC2 complex in lymphoma. Bioorg Chem. 2023;140:106762. https://doi.org/10.1016/j.bioorg.2023.106762 
  9. Kim SB, Yang CE, Jeong Y, Yu M, Choi WS, Lim JY, et al. Dual targeting of EZH2 degradation and EGFR/HER2 inhibition for enhanced efficacy against Burkitt's lymphoma. Cancers (Basel). 2023;15:4472. https://doi.org/10.3390/cancers15184472 
  10. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13:117. https://doi.org/10.1186/s13045-020-00951-w 
  11. Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 2022;13:6350. https://doi.org/10.1038/s41467-022-34209-5 
  12. Li J, Zhu Z, Zhu Y, Li J, Li K, Zhong W. METTL3-mediated m6A methylation of C1qA regulates the Rituximab resistance of diffuse large B-cell lymphoma cells. Cell Death Discov. 2023;9:405. https://doi.org/10.1038/s41420-023-01698-2 
  13. Meng S, Xia Y, Li M, Wu Y, Wang D, Zhou Y, et al. NCBP1 enhanced proliferation of DLBCL cells via METTL3-mediated m6A modification of c-Myc. Sci Rep. 2023;13:8606. https://doi.org/10.1038/s41598-023-35777-2 
  14. Li M, Ye J, Xia Y, Li M, Li G, Hu X, et al. METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia. 2022;36:2586-2595. https://doi.org/10.1038/s41375-022-01696-w 
  15. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597-601. https://doi.org/10.1038/s41586-021-03536-w 
  16. Ferry JA. Burkitt's lymphoma: clinicopathologic features and differential diagnosis. Oncologist. 2006;11:375-383. https://doi.org/10.1634/theoncologist.11-4-375 
  17. Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med. 2014;4:a014282. https://doi.org/10.1101/cshperspect.a014282 
  18. Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell. 2002;13:978-988. https://doi.org/10.1091/mbc.01-05-0272 
  19. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem. 1999;274:22932- 22940. https://doi.org/10.1074/jbc.274.33.22932 
  20. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27 Suppl 1(Suppl 1):S71-S83. https://doi.org/10.1038/onc.2009.45 
  21. Han CW, Lee HN, Jeong MS, Park SY, Jang SB. Structural basis of the p53 DNA binding domain and PUMA complex. Biochem Biophys Res Commun. 2021;548:39-46. https://doi.org/10.1016/j.bbrc.2021.02.049 
  22. Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front Pharmacol. 2021;12:692574. https://doi.org/10.3389/fphar.2021.692574 
  23. Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Ther. 2017;174:138-144. https://doi.org/10.1016/j.pharmthera.2017.02.027 
  24. Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, et al. An overview of PROTACs: a promising drug discovery paradigm. Mol Biomed. 2022;3:46. https://doi.org/10.1186/s43556-022-00112-0 
  25. Bricelj A, Steinebach C, Kuchta R, Gutschow M, Sosic I. E3 ligase ligands in successful PROTACs: an overview of syntheses and linker attachment points. Front Chem. 2021;9:707317. https://doi.org/10.3389/fchem.2021.707317 
  26. Dale B, Cheng M, Park KS, Kaniskan Hu, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021;21:638-654. https://doi.org/10.1038/s41568-021-00365-x 
  27. Velez J, Dale B, Park KS, Kaniskan Hu, Yu X, Jin J. Discovery of a novel, highly potent EZH2 PROTAC degrader for targeting noncanonical oncogenic functions of EZH2. Eur J Med Chem. 2024;267:116154. https://doi.org/10.1016/j.ejmech.2024.116154 
  28. Liu Z, Hu X, Wang Q, Wu X, Zhang Q, Wei W, et al. Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for targeting the noncatalytic activity of EZH2. J Med Chem. 2021;64:2829-2848. https://doi.org/10.1021/acs.jmedchem.0c02234 
  29. Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev. 2022;51:8216-8257. https://doi.org/10.1039/d2cs00387b 
  30. An S, Fu L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018;36:553-562. https://doi.org/10.1016/j.ebiom.2018.09.005