DOI QR코드

DOI QR Code

The potential usefulness of several medicinal insects and their major amino acids in allergic disorders

수종 곤충류 한약재 및 함유 아미노산의 알레르기 질환 치료의 유용성 연구

  • Young-Cheol Lee (Department of Herbology, College of Korean Medicine, Sangji University)
  • 이영철 (상지대학교 한의과대학 본초학교실)
  • Received : 2024.08.08
  • Accepted : 2024.09.25
  • Published : 2024.09.30

Abstract

Objectives : Edible insects are the widely distributed group of animals and contain high quality proteins, fatty acids and minerals. In particular, insects are a possible interesting source of essential amino acids. Insects as traditional medicines have much potential as pharmaceuticals in modern medicines including treating infections, cancer, dissolving phlegm, relieving spasms, and inflammatory diseases. The aim of this study is to investigate the immunomodulatory effect of several kinds of insects and major amino acids. Methods : In our review we try to show the potential usefulness of insects and amino acids in searching for new therapeutic solutions for immunologic diseases. We summarized the knowledge about properties, usefulness of insect and amino acids in drug design. We hypothesized that insects and amino acids, their major ingredients, regulates airway inflammation and immunologic diseases and can be developed as therapeutic drugs for the treatment of immunologic diseases. Results : Several insects including Bombyx mori, Cryptotympana pustulata, Holotrichia diomphalia, Locusta migratoria, etc. and amino acids such as glutamine, glutamic acid, methionine and glycine may have potential protective effects against asthma and airway neutrophilia. Glutamic acid, cystine, methionine and glycine which contribute to glutathione metabolism, which are important anti-oxidant amino acids that may affect susceptibility to asthma. Conclusions : Our results provide evidence about the potential usefulness of several insects and their amino acids in allergic disorders. These findings suggest that several insects and amino acids have important roles in the way they affect the immune system and allergic responses.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (grant number 2019R1A2C1083854).

References

  1. Shi Z, Song T, Wan Y, Xie J, Yan Y, Shi K, Du Y, Shang L. A systematic review and meta-analysis of traditional insect Chinese medicines combined chemotherapy for non-surgical hepatocellular carcinoma therapy. Sci Rep. 2017;7(1):4355. doi: 10.1038/s41598-017-04351-y.
  2. Pemberton RW. Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharmacol. 1999;65(3):207-216. doi: 10.1016/s0378-8741(98)00209-8.
  3. Ministry of Food and Drug Safety, (2024, August 9). Korean Food Code. Retrieved from https://various. foodsafetykorea.go.kr/fsd/#/ext/Document/fc
  4. Mlcek J, Rop O, Borkovcova M, Bednarova M. A Comprehensive Look at the Possibilities of Edible Insects as Food in Europe - A Review. Polish Journal of Food and Nutrition Sciences. 2014;64(3):147-157. doi: https://doi.org/10.2478/v10222-012-0099-8.
  5. Nowakowski AC, Miller AC, Miller ME, Xiao H, Wu X. Potential health benefits of edible insects. Crit Rev Food Sci Nutr. 2022;62(13):3499-3508. doi: 10.1080/10408398.2020.1867053.
  6. Zielinska E, Baraniak B, Karas M, Rybczynska K, Jakubczyk A. Selected species of edible insects as a source of nutrient composition. Food Research International, 2015;77:460-466. https://doi.org/10.1016/j.foodres.2015.09.008.
  7. Ratcliffe N, Azambuja P, Mello CB. Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines. Evid. Based Complement. Altern. Med. 2014;2014:904958. doi: 10.1155/2014/904958.
  8. Rothman JM, Raubenheimer D, Bryer MA, Takahashi M, Gilbert CC. Nutritional contributions of insects to primate diets: implications for primate evolution. J Hum Evol. 2014;71:59-69. doi: 10.1016/j.jhevol.2014.02.016.
  9. Orkusz A. Edible Insects versus Meat-Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients. 2021;13(4):1207. doi: 10.3390/nu13041207.
  10. Clarkson C, Mirosa M, Birch J. Potential of Extracted Locusta Migratoria Protein Fractions as Value-Added Ingredients. Insects. 2018;9(1):20. doi: 10.3390/insects9010020.
  11. Purschke B, Tanzmeister H, Meinlschmidt P, Baumgartner S, Lauter K, Jager H. Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res Int. 2018;106:271-279. doi: 10.1016/j.foodres.2017.12.067.
  12. Zhao X, Vazquez-Gutierrez JL, Johansson DP, Landberg R, Langton M. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLoS One. 2016;11(2):e0147791. doi: 10.1371/journal.pone.0147791.
  13. Mwangi MN, Oonincx DGAB, Stouten T, Veenenbos M, Melse-Boonstra A, Dicke M, van Loon JJA. Insects as sources of iron and zinc in human nutrition. Nutr Res Rev. 2018;31(2):248-255. doi: 10.1017/S0954422418000094.
  14. Hu M, Yu Z, Wang J, Fan W, Liu Y, Li J, Xiao H, Li Y, Peng W, Wu C. Traditional Uses, Origins, Chemistry and Pharmacology of Bombyx batryticatus: A Review. Molecules. 2017;22(10):1779. doi: 10.3390/molecules22101779.
  15. Gao Y, Wang D, Xu ML, Shi SS, Xiiong JF. Toxicological characteristics of edible insects in China: A historical review. Food Chem Toxicol. 2018;119:237-251. doi: 10.1016/j.fct.2018.04.016.
  16. Verkerk MC, Tramper J, van Trijp JC, Martens DE. Insect cells for human food. Biotechnol Adv. 2007;25(2):198-202. doi: 10.1016/j.biotechadv.2006.11.004.
  17. Purschke B, Tanzmeister H, Meinlschmidt P, Baumgartner S, Lauter K, Jager H. Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res Int. 2018;106:271-279. doi: 10.1016/j.foodres.2017.12.067.
  18. Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods. 2022;11(24):3961. doi: 10.3390/foods11243961.
  19. Fogarty A, Broadfield E, Lewis S, Lawson N, Britton J. Amino acids and asthma: a case-control study. Eur Respir J. 2004;23(4):565-8. doi: 10.1183/09031936.04.00090404.
  20. Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J. 2000;16(3):534-54. doi: 10.1034/j.1399-3003.2000.016003534.x.
  21. Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C. Glutathione levels in antigenpresenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci U S A. 1998;95(6): 3071-6. doi: 10.1073/pnas.95.6.3071.
  22. Ricciardolo FL. Multiple roles of nitric oxide in the airways. Thorax. 2003;58(2):175-82. doi: 10.1136/thorax.58.2.175.
  23. Boer J, Duyvendak M, Schuurman FE, Pouw FM, Zaagsma J, Meurs H. Role of L-arginine in the deficiency of nitric oxide and airway hyperreactivity after the allergen-induced early asthmatic reaction in guinea-pigs. Br J Pharmacol. 1999;128(5): 1114-20. doi: 10.1038/sj.bjp.0702882.
  24. Maarsingh H, Zaagsma J, Meurs H. Arginine homeostasis in allergic asthma. Eur J Pharmacol. 2008;585(2-3):375-84. doi: 10.1016/j.ejphar.2008.02.096.
  25. Lee K, Kim SH, Yoon HJ, Paik DJ, Kim JM, Youn J. Bacillus-derived poly-γ-glutamic acid attenuates allergic airway inflammation through a Toll-like receptor-4-dependent pathway in a murine model of asthma. Clin Exp Allergy. 2011;41(8):1143-56. doi: 10.1111/j.1365-2222.2011.03792.x.
  26. Hwang YP, Jin SW, Choi JH, Choi CY, Kim HG, Kim SJ, Kim Y, Lee KJ, Chung YC, Jeong HG. Inhibitory effects of l-theanine on airway inflammation in ovalbumin-induced allergic asthma. Food Chem Toxicol. 2017;99:162-169.
  27. Seo C, Hwang YH, Lee HS, Kim Y, Shin TH, Lee G, Son YJ, Kim H, Yee ST, Park AK, Paik MJ. Metabolomic study for monitoring of biomarkers in mouse plasma with asthma by gas chromatography- mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1063:156-162. doi: 10.1016/j.fct.2016.11.032.
  28. Ciprandi G, Fuchs D. Tryptophan metabolic pathway, airway nitric oxide, and allergy. Ann Allergy Asthma Immunol. 2017;119(5):395-396. doi: 10.1016/j.anai.2017.08.010.
  29. Ko HM, Kang NI, Kim YS, Lee YM, Jin ZW, Jung YJ, Im SY, Kim JH, Shin YH, Cho BH, Lee HK. Glutamine preferentially inhibits T-helper type 2 cell-mediated airway inflammation and late airway hyperresponsiveness through the inhibition of cytosolic phospholipase A(2) activity in a murine asthma model. Clin Exp Allergy. 2008;38(2): 357-64. doi: 10.1111/j.1365-2222.2007.02900.x.
  30. Lee CH, Kim HK, Kim JM, Ayush O, Im SY, Oh DK, Lee HK. Glutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A(2) via an induction of MAPK phosphatase-1. J Immunol. 2012;189(11):5139-46. doi: 10.4049/jimmunol.1201599.
  31. Kim JM, Im YN, Chung YJ, Youm JH, Im SY, Han MK, Lee HK. Glutamine deficiency shifts the asthmatic state toward neutrophilic airway inflammation. Allergy. 2022;77(4):1180-1191. doi: 10.1111/all.15121.
  32. van Bergenhenegouwen J, Braber S, Loonstra R, Buurman N, Rutten L, Knipping K, Savelkoul PJ, Harthoorn LF, Jahnsen FL, Garssen J, Hartog A. Oral exposure to the free amino acid glycine inhibits the acute allergic response in a model of cow's milk allergy in mice. Nutr Res. 2018;58:95-105. doi: 10.1016/j.nutres.2018.07.005.
  33. Finke MD. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013;32(1): 27-36. doi: 10.1002/zoo.21012.
  34. Rumpold BA, Schluter OK. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 2013;57(5):802-23. doi: 10.1002/mnfr.201200735.
  35. Zhao M, Wang CY, Sun L, He Z, Yang PL, Liao HJ, Feng Y. Edible Aquatic Insects: Diversities, Nutrition, and Safety. Foods. 2021;10(12):3033. doi: 10.3390/foods10123033.
  36. Kim SH, Hong JH, Yang WK, Kim HJ, An HJ, Lee YC. Cryptotympana pustulata Extract and Its Main Active Component, Oleic Acid, Inhibit Ovalbumin-Induced Allergic Airway Inflammation through Inhibition of Th2/GATA-3 and Interleukin-17/RORγt Signaling Pathways in Asthmatic Mice. Molecules. 2021;26(7):1854. doi: 10.3390/molecules26071854.
  37. Hong JH, Kim SH, Lee YC. The Ethanol Extract of Holotrichia diomphalia Larvae, Containing Fatty acids and Amino acids, Exerts Anti-Asthmatic Effects through Inhibition of the GATA-3/Th2 Signaling Pathway in Asthmatic Mice. Molecules. 2019;24(5):852. doi: 10.3390/molecules24050852.
  38. Fan M, Choi YJ, Wedamulla NE, Zhang Q, Kim SW, Bae SM, Seok YS, Kim EK. Use of a Silkworm (Bombyx mori) Larvae By-Product for the Treatment of Atopic Dermatitis: Inhibition of NF-kappaB Nuclear Translocation and MAPK Signaling. Nutrients. 2023;15(7):1775. doi: 10.3390/nu15071775.
  39. Wang CN, Lin YC, Chang BC, Chen CH, Wu R, Lee CC. Targeting the phosphorylation site of myristoylated alanine-rich C kinase substrate alleviates symptoms in a murine model of steroid-resistant asthma. Br J Pharmacol. 2019;176(8): 1122-1134. doi: 10.1111/bph.14596.
  40. Chiu CY, Cheng ML, Chiang MH, Kuo YL, Tsai MH, Chiu CC, Lin G. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatr Allergy Immunol. 2019;30(7):689-697. doi: 10.1111/pai.13096.
  41. Quinn KD, Schedel M, Nkrumah-Elie Y, Joetham A, Armstrong M, Cruickshank-Quinn C, Reisdorph R, Gelfand EW, Reisdorph N. Dysregulation of metabolic pathways in a mouse model of allergic asthma. Allergy. 2017;72(9):1327-1337. doi: 10.1111/all.13144.
  42. Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract. 2017;32(1_suppl):30S-47S. doi: 10.1177/0884533617691250.
  43. Benson RC, Hardy KA, Morris CR. Arginase and arginine dysregulation in asthma. J Allergy (Cairo). 2011;2011:736319. doi: 10.1155/2011/736319.
  44. Maarsingh H, Zaagsma J, Meurs H. Arginine homeostasis in allergic asthma. Eur J Pharmacol. 2008;585(2-3):375-84. doi: 10.1016/j.ejphar.2008.02.096.
  45. Scott JA, Grasemann H. Arginine metabolism in asthma. Immunol Allergy Clin North Am. 2014; 34(4):767-75. doi: 10.1016/j.iac.2014.07.007.
  46. Jaber R. Respiratory and allergic diseases: from upper respiratory tract infections to asthma. Prim Care. 2002;29(2):231-61. doi: 10.1016/s0095-4543(01)00008-2.
  47. Stephenson ST, Brown LA, Helms MN, Qu H, Brown SD, Brown MR, Fitzpatrick AM. Cysteine oxidation impairs systemic glucocorticoid responsiveness in children with difficult-to-treat asthma. J Allergy Clin Immunol. 2015;136(2): 454-61.e9. doi: 10.1016/j.jaci.2015.01.023.
  48. Hoffman S, Nolin J, McMillan D, Wouters E, Janssen-Heininger Y, Reynaert N. Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma. J Cell Biochem. 2015;116(6):884-92. doi: 10.1002/jcb.25017.
  49. Zhou Y, Yang M, Dong BR. Monosodium glutamate avoidance for chronic asthma in adults and children. Cochrane Database Syst Rev. 2012;(6): CD004357. doi: 10.1002/14651858.CD004357.pub4.
  50. Oliveira GP, de Abreu MG, Pelosi P, Rocco PR. Exogenous Glutamine in Respiratory Diseases: Myth or Reality? Nutrients. 2016;8(2):76. doi: 10.3390/nu8020076.
  51. Dewar JC, Wilkinson J, Wheatley A, Thomas NS, Doull I, Morton N, Lio P, Harvey JF, Liggett SB, Holgate ST, Hall IP. The glutamine 27 beta2- adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. J Allergy Clin Immunol. 1997;100(2):261-5. doi: 10.1016/s0091-6749(97)70234-3.
  52. Yim PD, Gallos G, Xu D, Zhang Y, Emala CW. Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle. FASEB J. 2011;25(5): 1706-17. doi: 10.1096/fj.10-170530.
  53. Weglarz L, Grzanka A, Kierot J, Wilczok T. Polimorfizm receptora beta 2-adrenergicznego [Polymorphism of beta 2-adrenergic receptors]. Wiad Lek. 2003;56(5-6):283-8.
  54. Oh JY, Lee YS, Min KH, Hur GY, Lee SY, Kang KH, Rhee CK, Park SJ, Khan A, Na J, Park YH, Shim JJ. Increased urinary l-histidine in patients with asthma-COPD overlap: a pilot study. Int J Chron Obstruct Pulmon Dis. 2018;13:1809-1818. doi: 10.2147/COPD.S163189. eCollection 2018.
  55. Barnes PJ. Neuropeptides and asthma. Am Rev Respir Dis. 1991;143(3 Pt 2):S28-32. doi: 10.1164/ajrccm/143.3_Pt_2.S28.
  56. Honda H, Fujimoto M, Miyamoto S, Ishikawa N, Serada S, Hattori N, Nomura S, Kohno N, Yokoyama A, Naka T. Sputum Leucine-Rich Alpha-2 Glycoprotein as a Marker of Airway Inflammation in Asthma. PLoS One. 2016;11(9):e0162672. doi: 10.1371/journal.pone.0162672. eCollection 2016.
  57. Su XM, Ren Y, Li ML, Bai SY, Yu N, Kong LF, Kang J. Proteomics profiling asthma inducedlysine acetylation. EXCLI J. 2020;19:734-744. doi: 10.17179/excli2019-1508. eCollection 2020.
  58. Hu Q, Jin L, Zeng J, Wang J, Zhong S, Fan W, Liao W. Tryptophan metabolite-regulated Treg responses contribute to attenuation of airway inflammation during specific immunotherapy in a mouse asthma model. Hum Vaccin Immunother. 2020;16(8): 1891-1899. doi: 10.1080/21645515.2019.1698900.
  59. Gostner JM, Becker K, Kofler H, Strasser B, Fuchs D. Tryptophan Metabolism in Allergic Disorders. Int Arch Allergy Immunol. 2016;169(4): 203-15. doi: 10.1159/000445500.
  60. Licari A, Fuchs D, Marseglia G, Ciprandi G. Tryptophan metabolic pathway and neopterin in asthmatic children in clinical practice. Ital J Pediatr. 2019;45(1):114. doi: 10.1186/s13052-019-0699-6.
  61. Guntur VP, Reinero CR. The potential use of tyrosine kinase inhibitors in severe asthma. Curr Opin Allergy Clin Immunol. 2012;12(1):68-75. doi: 10.1097/ACI.0b013e32834ecb4f.
  62. Feng Y, Chen XM, Zhao M, He Z, Sun L, Wang CY, Ding WF. Edible insects in China: Utilization and prospects. Insect Sci. 2018;25(2):184-198. doi: 10.1111/1744-7917.12449.