
Communications for Statistical Applications and Methods
2024, Vol. 31, No. 5, 487–496

https://doi.org/10.29220/CSAM.2024.31.5.487
Print ISSN 2287-7843 / Online ISSN 2383-4757

Segmentation of binary sequence via minimizing least
square error with total variation regularization

Jeungju Kima, Johan Lim1,a

aDepartment of Statistics, Seoul National University, Korea

Abstract
In this paper, we propose a data-driven procedure to segment a binary sequence as an alternative to the

popular hidden Markov model (HMM) based procedure. Unlike the HMM, our procedure does not make any
distributional or model assumption to the data. To segment the sequence, we suggest to minimize the least square
distance from the observations under total variation regularization to the solution, and develop a polynomial time
algorithm for it. Finally, we illustrate the algorithm using a toy example and apply it to the Gemini boat race data
between Oxford and Cambridge University. Further, we numerically compare the performance of our procedure
to the HMM based segmentation through these examples.

Keywords: binary sequence, gemini boat race data, least square error, run length code, segmen-
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1. Introduction

The segmentation of a binary sequence has been discussed with several different names depending
on its context, where the binary sequence comes from and what are the purpose of the segmentation.
In signal processing, it is often called the de-nosing of a noisy signal or the compression of binary
signal (Gray, 1984; Lelewer and Hirschberg, 1987; Donoho et al., 1998; Selesnick et al., 2013). In
statistics and their related areas, it is often read as the change point detection of a sequence of binary
observations (Rojas and Wahlberg, 2014; Son et al., 2023).

In all the above, the hidden Markov model (HMM) is the most popular method to segment the
binary sequence/achieve their goal (Zucchini et al., 2017). It assumes the existence of a true sequence
that follows a Markov Chain (MC) and finds the most likely sequence having the highest posterior
probability. To estimate the HMM we have 60 years old veteran algorithms, the Viterbi algorithm
(Viterbi, 1967; Forney, 1973) and the Baum-Welch algorithm (Baum and Petrie, 1966), which are
still beloved up to now. However, HMM makes a specific distributional assumption: the Markov Chain
assumption on the true signal includes a specific order and the conditionally independent observational
distribution given the true sequence.

In this paper, as an alternative to HMM, we propose a procedure for the segmentation of a binary
sequence that is purely data-driven and does not make any distributional or model assumptions. We
suggest finding a sequence that minimizes the least square distance to the observations, which we call
the least square error in this paper, under the assumption that the number of segments is given a priori.
Here, in a binary sequence, the least square distance is equal to the Hamming distance without the
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constant, and the number of segments of a binary sequence is equal to its total variation. We develop a
polynomial time algorithm to solve the problem (a formal definition of the problem is given in (2.1) in
the next section). In addition, we adapt the GAP statistic (Tibshirani et al., 2001) as an outer procedure
to decide the number of segments, which compares the total within-cluster sum of squares of clusters
with its expected value under the assumption of no segment.

This article is organized as follows. In Section 2, we propose an algorithm to solve the problem,
the minimization of the least square error under total variation regularization. We illustrate it with a
toy example to help the understanding of the algorithm and show its computational complexity. In
addition, we review and discuss the GAP statistic and its variants to decide the number of optimal
segments. In Section 3, we apply it to segmenting two real data examples, the Gemini boat race
data between Oxford and Cambridge University https://www.theboatrace.org and the Tiger Woods
tournament data between September, 1999 and June, 2001.

2. Data driven binary segmentation

Suppose we observe a binary sequence of binary observations xn = (X1, . . . , Xn) and want to find its
segmented or de-noised sequence yn = (Y1, . . . ,Yn).

2.1. Main problem

The problem we suggest to solve is, for a given constant R,

minimizeyn E(yn, xn) :=
∑n

i=1
(
Yi − Xi

)2
=

∑n
i=1 I

(
Yi , Xi)

subject to
∑n

i=2 I(Yi−1 , Yi) ≤ R,
(2.1)

where I(A) is the indicator function for the event A. In the above,
∑n

i=2 I(Yi−1 , Yi) equals to the total
variation of the sequence yn that is V(yn) :=

∑n
i=2 |Yi − Yi−1|.

2.2. Algorithm to solve the main problem

We start with some notations and preliminary results related with the optimal solution y∗n = (Y∗1 ,Y
∗
2 , . . . ,Y

∗
n )

to (2.1).

Lemma 1. Let A be the set of indices i = 2, 3, . . . , n that satisfies Xi = Xi−1. For every i ∈ A,
Y∗i = Y∗i−1.

Proof: Suppose, for some k ∈ A, Y∗k , Y∗k−1. We assume Xk−1 = Xk = 0 and Yk−1 = 0,Yk = 1 without
loss of generality. Let zn = (Z1,Z2, . . . ,Zn)

Zi = Yi, i , k, and Zi = 1 − Yi, i = k,

i.e., Zi differs from Yi only when i = k. We then have

E(zn, xn) < E(y∗n, xn),

while

V(zn) ≤ V(y∗n),

It contradicts to y∗n is the optimal solution to (2.1). 2
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We use the following notations and terminologies in explaining our algorithm.

(T1) ∀i = 2, 3, . . . , n, if Xi , Xi−1, we call i as a change point of xn.

(T2) Suppose xn = (X1, . . . , Xn) has p change points (i1, . . . , ip), where i1 < · · · < ip. ∀k = 1, . . . , p+1,
we define the kth chunk of xn as the set

Cx(k) :=
{
X j | ik−1 ≤ j < ik

}
,

where i0 = 0 and ip+1 = n. The length of kth chunk is notated as |Cx(k)|.

(T3) We define the act of flipping or flip as changing all the elements of a given chunk from 0 to 1 or
1 to 0.

(T4) We define the cost vector d = (d1, . . . , dq) where dk is the additioinal increase in error (the least
square error) when the kth-chunk is flipped.

(T5) In the iteration of the algorithm, we call the E(yn,`, xn) as the `th loss where yn,` is the resulting
vector after ` flips.

We make three remarks as preliminaries for the algorithm. First, a sequence xn = (X1, X2, . . . , Xn)
uniquely defines the initial sequence X1 and the set of change points and vice versa. This introduces
the run-length code (RLC) for data compression in signal processing (Golomb, 1966). Second, from
Lemma 1, to solve (2.1), it suffices to choose R − 1 change points of the change points of xn. If xn has
R − 1 change points or less, the solution y∗n equals to xn. Third, there is a one-to-one correspondence
between ‘picking change points of xn’ and ‘flipping the chunks of xn’. Thus, we could obtain the
solution y∗n to (2.1) by flipping some chunks of xn.

Now let us explain our algorithm to solve (2.1).

(S1) Change the encoding of the binary sequence xn = (X1, X2, . . . , Xn) into the run-length code
(RLC) form as (|Cxn (1)|, |Cxn (2)|, . . . , |Cxn (p+1)|) where p equals to the number of change points
of xn. Additionally, set the initial values of the cost vector to match the RLC.

(S2) Divide the problem into 4 sub-problems according to our first move, named as ‘0 to 0 (I-00)’, ‘0
to 1 (I-01)’, ‘1 to 0 (I-10)’, ‘1 to 1 (I-11)’. Here, ‘0 to 0 (I-00)’ implies our first move is to make
both the first and last chunk’s signals 0, ‘0 to 1 (I-01)’ implies our first move is to make the first
chunk’s signal is 0 and the last chunk’s signal is 1, ‘1 to 0 (I-10)’ implies our first move is to
make the first chunk’s signal is 1 and the last chunk’s signal is 0, and ‘1 to 1 (I-11)’ implies our
first move is to make both the first and last chunk’s signals 1.

(S3) For each of sub-problem (I-00, I-01, I-10, I-11), flip the chunk having the smallest cost except
the first and the last chunk fixed at (S2). Update the corresponding RLC, cost, and loss. Repeat
this until the required R is met.

(S4) Among the solutions to sub-problems (I-00, I-01, I-10, I-11), find the solution with the smallest
loss.

To understand the algorithm above better, let us consider the following simple toy example. Sup-
pose we observe the sequence with a length of n = 19 as

x = (0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1).
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We aim to segment it into three chunks (R = 2), but want to minimally distort the original sequence
in terms of the least square distance. To do it, we solve (2.1) with R = 2.

In (S1), the observation is encoded as RLC with X1 = 0 as

U0 = (2, 4, 5, 4, 3, 1; 0), (2.2)

and the corresponding cost vector is represented as

d0 = (2, 4, 5, 4, 3, 1). (2.3)

In this step, the cost vector and the RLC code is the same because flipping the chunk of length m
directly increases the objective function by m.

In (S2), we consider four initial movements. Firstly, let us consider the (I-00) case. Since our
original data xn starts from 0 and ends with 1, we should first flip the last chunk into 0. The last
element of d0 equals to 1 so this increases the loss by 1. The resulting RLC code and cost vector is as
follows.

U(1)
1 = (2, 4, 5, 4, 4; 0) (2.4)

d(1)
1 = (2, 4, 5, 4, 2). (2.5)

The last element of the RLC code is computed by U(1)
1,5 = U(1)

0,5 + U(1)
0,6 = 3 + 1 = 4 and the last element

of the cost is computed by d(1)
1,5 = d(1)

0,5 − d(1)
0,6 = 3− 1 = 2. Here and throughout this example, U(i)

a,b is the
bth component of U(i)

a , where U(i)
a represents the resulting RLC code after a iterations starting from

the ith initialial movement. Similarly, d(i)
a,b is defined for the cost vector.

In (S3), we flip the second chunk because it has the smallest value in d1 except the first and the
last ones. In fact, tie occurs between the second and the fourth element and we break the tie in favor
of the lowest index. This results in the increase in the loss by d1,2 = 4 and the loss accumulated is 5.
After this flip, the RLC code and cost vector become

U(1)
2 = (11, 4, 4; 0) (2.6)

d(1)
2 = (3, 4, 2). (2.7)

In this iteration, U(1)
2,1 = U(1)

1,1 + U(1)
1,2 + U(1)

1,3 = 2 + 4 + 5 = 11 and d(1)
2,1 = d(1)

1,1 + d(1)
1,3 − d(1)

1,2 = 2 + 5− 4 = 3.
Since the total number of chunks is 3, which is equal our target, we stop here.

For subproblem (I-01), (S2) is skipped since our data x already starts from 0 and ends with 1. In
(S3), the fifth element of d0 has the smallest value except the first and the last element so we flip the
fifth chunk. This results in

U(2)
1 = (2, 4, 5, 8; 0) (2.8)

d(2)
1 = (2, 4, 5, 2), (2.9)

and the loss becomes 3. The chunk with the smallest cost is the second so flipping the second one
yields

U(2)
2 = (11, 8; 0) (2.10)

d(2)
2 = (3, 2), (2.11)



Segmentation of binary sequence via minimizing least square error with total variation regularization 491

Figure 1: Loss and GAP statistics versus R: (a) the left panel plots R vs the optimal error E of y∗n, (b) the right
panel plots R vs GAP statistics.

and the loss increases to 7. Now that the total number of chunk is less than our target, we stop here.
We iterate the same procedure for subproblem (I-10) and (I-11), and both end up with

U(3)
2 = (6, 13; 1), d(3)

2 = (2, 3), loss = 7,
U(4)

2 = (6, 5, 8; 1), d(4)
2 = (2, 5, 2), loss = 5,

respectively.
Finally, in (S4), we choose both (I-00) and (I-11) which yielded the smallest loss, 5. Thus our

algorithm finds two optimal solutions U(1)
2 and U(4)

2 .

2.3. Two remarks

We make two remarks on our proposed algorithm. First, the solution found by the algorithm is at least
sub-optimal by its nature. The algorithm searches for the best flip of the current segmentation among
all possibilities to make the smallest increase in the cost. Thus, by its nature, the solution has the
smallest cost among its neighbor segmentations made by a flip of the current segmentation. Second,
the proposed algorithm is a polynomial time algorithm. It is because, in (S3), each step decreases
the quantity

∑n
i=2 I(Yi−1 , Yi) by 2. Since the number of chunks is less than n, this shows that the

algorithm is O(n).

2.4. Selection of R

The parameter R decides the number of segments of y∗n as R + 1, which is an outer parameter that is
given before formulating the main problem (2.1). The parameter represents the regularity or smooth-
ness of the optimal signal, and it is important to decide it appropriately. We find many methods to do
it in the literature, although there exists no best one over all others (Casella et al., 2014).

In this paper, we read our segmentation problem as a clustering of binary sequences on a line
graph and adapt the original GAP statistic by (Tibshirani et al., 2001), which is designed to find the
optimal number of clusters in cluster analysis. We recall that there exist several variants of the GAP
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Figure 2: The original yn and optimal sequence of HMM and HTV y∗n when R = 14.

(e.g. Yan and Ye (2007) and Mohajer et al. (2010)). However, we do not consider them here because
all measures have pros and cons, and have steps we may subjectively involve in.

A brief introduction to the original GAP is as follows. Suppose the data are segmented into K
exclusive and exhaustive clusters, C1, . . . ,CK , where Ck = {ak, ak + 1, . . . , bk} and ak+1 = bk + 1 and
ak ≤ bk for k = 1, 2, . . . , n − 1. In connection with our total variation penalty in (2.1), K = R. Given
the clusters, the sum of the pairwise distances for all points in cluster k is defined as

Dk =
∑

i,i′∈Ck

d(i, i′),

where d(i, i′) is any distance measure between Yi and Yi′ . Here, we use the Euclidean distance and Dk

is simply reduced to the product of the number of 1s and the number of 0s in cluster k. Once Dk is
computed, the pooled within-cluster sum of squares (PWSS) is defined as

WK =

K∑
k=1

1
2|Ck |

Dk,

where |Ck | is the number of observations in cluster k. Finally, the GAP statistics is defined as

Gapn(k) = E∗n
[
log (Wk)

]
− log (Wk) , (2.12)

where E∗n
[
log(Wk)

]
is the expectation of log(Wk) for the observations from one cluster. We approxi-

mate the expectation in (2.12) using Monte Carlo samples independently from Bernoulli distribution
with probability p, where p is set as the empirical proportion of 1 of xn.

To be specific, let xb
n be the Monte Carlo replications of xn under one cluster assumption, and W (b)

k
their PWSS values for b = 1, 2, . . . , B. Then,

ˆGap(k) = (1/B)
B∑

b=1

log
(
Wb

k

)
− log (Wk) ,
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Figure 3: Loss and GAP statistics versus R: (a) the left panel plots R vs the optimal error E of y∗n, (b) the right
panel plots R vs GAP statistics.

and find the optimal k as

k∗ = argmin
{
k
∣∣∣ ˆGap(k) > ˆGap(k + 1) − εsk

}
, (2.13)

where

W̄ =
1
B

B∑
b=1

log
(
W (b)

k

)
sd2

(
ˆGap(k)

)
=

1
B

B∑
b=1

(
log

(
W (b)

k

)
− W̄

)2

s2
k = sd2

(
ˆGap(k)

) (
1 +

1
B

)
,

and ε can be empirically chosen. The one-standard error rule in the literature (Tibshirani et al., 2001)
sets ε = 1 in (2.13).

3. Data example

3.1. The gemini boat race data

In this section, we apply our algorithm (named as HTV) to the Gemini boat race data from https://thebo
atrace.org/results. It records the boat race results between Oxford and Cambridge University from year
1829 to now. The data are in the form of 167×5 table each column denoting race, year, winner, winning
distance, and winning time. In our analysis, we only used the winner column, where we arbitrarily
assigned 1 if Oxford won, 0 if Cambridge won.

We tried R from 0 to 64 and found the optimal solution to (2.1), y∗n(R), for each R. The minimum
error achieved for each R is plotted in the left panel of Figure 1. In addition, we computed the GAP
statistic for every R with the method suggested in Section 2.4. The result is shown in Figure 1. Ap-
plying the process in Section 2.4 resulted in R̂ = 0 meaning that there’s no clear evidence of clusters
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Figure 4: Segementation of Tiger Woods’ tournament results.

in the data. However, we conclude it is quite reasonable to select R = 19, which is a local maximum
as shown in the right panel of Figure 1. The total variation rate for R = 19 for was 24/167 ≈ 14.4%,
and the detected change points are as, with a total of 19 in all, 1845, 1866, 1873, 1892, 1898, 1903,
1905, 1907, 1926, 1928, 1952, 1957, 1967, 1976, 1982, 1988, 1996, 2013, 2022. The results are plot-
ted in Figure 2. In the figure, for the comparison, we applied the HMM with the first-order hidden
Markov chain for the hidden states for the comparison. The HMM-based approach identified 14 dis-
tinct changepoints corresponding to R = 13 in our method. We find that the major segments by three
results, our HTVs with R = 14 and R = 19 and HMM, are quite similar to each other.

3.2. The Tiger Woods tournament data

As our second data example, we analyzed the tournament data of Tiger Woods, which includes the
results of 112 tournaments from September 1999 to June 2001. The data are reported in Yang (2004)
and the author proposed a Bayesian binary segmentation procedure, inherently similar to HMM, to
understand the phenomenon of ‘streakiness’.

Figure 4 displayed the results by three methods considered here, HTV, HMM, and the Bayesian
method by Yang (2004). Our HTV identified eight distinct change points following the procedure
outlined in Section 2.4, where the GAP statistics and losses are plotted in Figure 3. On the other hand,
the HMM and the Bayesian method by Yang (2004) pinpointed only a single changepoint, which
provides much coarser segments. The clustered data elucidate the career trajectory of Tiger Woods
during the period. We claim our HTV shows a more detailed move of his career than the other two
methods. The detected 8 change points are the 17th, 19th, 71th, 79th, 86th, 94th, 105th, and 111th and
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Table 1: The detected change points and their relevant events

Changepoint Tournament name Relevant event
17 Masters tournament, 1997 First major championship win in Woods’ career

19 MasterCard Colonial, 1997
Woods started to undertake his first swing change
under the guidance of Butch Harmon

71 WGC-NEC Invitational, 1999
Woods underwent laser eye surgery to correct
his myopic.

86 Memorial, 2000 Woods perfectly adapted to his changed swing.

94
National Car Rental Golf
Classic Disney, 2000 Woods signed a blockbuster deal with NIKE.

111 US Open, 2001
Woods claimed a historic achievement
that has since been known as the ‘Tiger Slam’
(winning all four men’s major championships).

their possibly relevant events are reported in Table 1.

4. Conclusion

In this paper, we propose to minimize the least square errors to segment a binary sequence as an
alternative to the HMM-based method. We develop a polynomial time algorithm to find the solution
for a given number of segments, R, and discuss the procedure to select R, the regularization parameter.
We illustrate our procedure by segmenting two real data examples, the boat race data between Oxford
and Cambridge University and the tournament results of Tiger Woods.

The results of this paper address the segmentation problem for the simplest form of data, but
we conjecture they could be extended to more complex data. For example, our HTV can be directly
applied to the segmentation of binomial sequences, a notable instance being baseball hit data. To be
specific, the HTV for binomial sequences is: First, we initialize chunks based on their predominant
binary outcomes and we randomly break the tie. Specifically, a chunk is assigned a value of 1 if
the frequency of 1s exceeds that of 0s, and 0 otherwise. This step results in an RLC form. Second,
calculate the cost vector of chunks but with extra care as our initial chunks could contain both 0s and
1s. Now that we obtained the RLC code and the cost vector, we can proceed as specified in Section 2.
Some other examples we are of interest are the sequence of data with a higher base more than two, or
the sequence of two- or multi-dimensional binary data. In both extensions, the form of total variation
regularization becomes more complex, posing a challenge in how to effectively control it during the
iterative procedures. We leave these for future work.
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