DOI QR코드

DOI QR Code

Molecular Identification and Genetic Diversity Analysis of Papaya Leaf Curl China Virus Infecting Ageratum conyzoides

  • Liping Zhang (Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University) ;
  • Shujie Wu (Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University) ;
  • Meisheng Zhao (Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University) ;
  • Hussein Ghanem (Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University) ;
  • Gentu Wu (Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University) ;
  • Mingjun Li (Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University) ;
  • Ling Qing (Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University)
  • Received : 2024.04.09
  • Accepted : 2024.07.18
  • Published : 2024.10.01

Abstract

Papaya leaf curl China virus (PaLCuCNV) is a damaging plant pathogen causing substantial losses to crop. The complete genomes of three PaLCuCNV isolates from Ageratum conyzoides were obtained and combined with the 68 reference isolates in GenBank for comprehensive genetic diversity analyses using specialized computational tools. Sequence alignment revealed nucleotide sequence similarity ranging from 85.3% to 99.9% among 71 PaLCuCNV isolates. Employing phylogenetic analysis, 71 PaLCuCNV sequences were clustered into five groups, with no significant correlation observed between genetic differentiation and either host species or geographical origin. Additionally, 13 recombination events across all PaLCuCNV isolates were identified. Genetic diversity analysis indicated the ongoing expansion and evolution of PaLCuCNV populations, supported by a neutral model. Moreover, significant genetic differentiation was observed among distinct viral populations, primarily attributed to genetic drift. Overall, our findings provide valuable insights into the detection, genetic variation, and evolutionary dynamics of PaLCuCNV.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 31272013), the Fundamental Research Funds for the Central Universities of the Ministry of Education of China (No. XDJK2017A006), and the Chongqing Municipal Training Program of Innovation and Entrepreneurship for Undergraduates (No. S202310635211 and No. 201610635053).

References

  1. Cuevas, J. M., Delaunay, A., Rupar, M., Jacquot, E. and Elena, S. F. 2012. Molecular evolution and phylogeography of potato virus Y based on the CP gene. J. Gen. Virol. 93(Pt 11):2496-2501.
  2. Deng, D., McGrath, P. F., Robinson, D. J. and Harrison, B. D. 1994. Detection and differentiation of whitefly-transmitted geminiviruses in plants and vector insects by the polymerase chain reaction with degenerate primers. Ann. Appl. Biol. 125:327-336.
  3. Farooq, A., Farooq, J., Mahmood, A., Shakeel, A., Rehman, A., Batool, A., Riaz, M., Shahid, M. T. H. and Mehboob, S. 2011. An overview of cotton leaf curl virus disease (CLCuD) a serious threat to cotton productivity. Aust. J. Crop Sci. 5:1823-1831.
  4. Freire, C. C. M., Iamarino, A., Soumare, P. O. L., Faye, O., Sall, A. A. and Zanotto, P. M. A. 2015. Reassortment and distinct evolutionary dynamics of Rift Valley Fever virus genomic segments. Sci. Rep. 5:11353.
  5. Fu, Y. X. and Li, W. H. 1993. Statistical tests of neutrality of mutations. Genetics 133:693-709.
  6. Guan, X., Chen, X., Guo, J., Lu, H., Liang, C. and Gao, F. 2024. Genetic variability and host adaption of cymbidium mosaic virus. Acta Hortic. Sin. 51:203-212 (in Chinese).
  7. Harrison, B. D. and Robinson, D. J. 1999. Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (Begomoviruses). Annu. Rev. Phytopathol. 37:369-398.
  8. Hou, Y. M. and Gilbertson, R. L. 1996. Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J. Virol. 70:5430-5436.
  9. Huang, J. F. and Zhou, X. P. 2006. Molecular characterization of two distinct begomoviruses from Ageratum conyzoides and Malvastrum coromandelianum in China. J. Phytopathol. 154:648-653.
  10. Hudson, R. R. 2000. A new statistic for detecting genetic differentiation. Genetics 155:2011-2014.
  11. Hudson, R. R., Boos, D. D. and Kaplan, N. L. 1992. A statistical test for detecting geographic subdivision. Mol. Biol. Evol. 9:138-151.
  12. Jiao, X., Gong, H., Liu, X., Xie, Y. and Zhou, X. 2013. Etiology of Ageratum yellow vein diseases in South China. Plant Dis. 97:1497-1503.
  13. Lee, S. I., Lee, H.-J. and Kwak, Y.-S. 2024. Genetic variation of Monilinia fructicola population in Korea. Plant Pathol. J. 40:205-217.
  14. Li, P., Jing, C., Wang, R., Du, J., Wu, G., Li, M., Sun, X. and Qing, L. 2018. Complete nucleotide sequence of a novel monopartite begomovirus infecting Ageratum conyzoides in China. Arch. Virol. 163:3443-3446.
  15. Li, P., Li, K., Jing, C., Wu, R., Wu, G., Li, M. and Qing, L. 2022. Molecular characterization of a novel Conyza canadensis-infecting begomovirus in China. Phytopathol. Res. 4:13.
  16. Monci, F., Sanchez-Campos, S., Navas-Castillo, J. and Moriones, E. 2002. A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303:317-326.
  17. Passos, L. S., Teixeira, J. W. M., Teixeira, K. J. M. L., Xavier, C. A. D., Zerbini, F. M., Araujo, A. S. F. and Beserra, J. E. A. Jr. 2017. Two new begomoviruses that infect non-cultivated malvaceae in Brazil. Arch. Virol. 162:1795-1797.
  18. Rao, X., Li, Y., Sun, J., Li, X., Li, M. and Xiang, M. 2014. Genetic diversities of Cymbidium mosaic virus and Odontoglossum ringspot virus isolates based on the coat protein genes from orchids in Guangdong Province, China. J. Phytopathol. 163:324-329.
  19. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. and Sanchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34:3299-3302.
  20. Sun, S.-R., Chen, J.-S., He, E.-Q., Huang, M.-T., Fu, H.-Y., Lu, J.-J. and Gao, S.-J. 2021. Genetic variability and molecular evolution of maize yellow mosaic virus populations from different geographic origins. Plant Dis. 105:896-903.
  21. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.
  22. Tamura, K., Stecher, G. and Kumar, S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38:3022-3027.
  23. Tomitaka, Y. and Ohshima, K. 2006. A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an 'emergent' lineage in Japan. Mol. Ecol. 15:4437-4457.
  24. Wang, X., Xie, Y. and Zhou, X. 2004. Molecular characterization of two distinct begomoviruses from Papaya in China. Virus Gene 29:303-309.
  25. Wang, Y., Zhang, X., Hu, T. and Zhou, X. 2021. Identification of two distinct begomoviruses infecting Malvastrum coromandelianum. Phytopathol. Res. 3:8.
  26. Zhang, H., Ma, X.-Y., Qian, Y.-J. and Zhou, X.-P. 2010. Molecular characterization and infectivity of Papaya leaf curl China virus infecting tomato in China. J. Zhejiang Univ. Sci. B 11:109-114.
  27. Zhu, W. and Zhan, J.-S. 2012. Population genetics of plant pathogens. Hereditas (Beijing) 34:157-166 (in Chinese).