DOI QR코드

DOI QR Code

Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities

  • Zhang Qing (Yunnan Agricultural University, Plant Protection College) ;
  • Yang Jida (Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute) ;
  • Fu Chengxiu (Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute) ;
  • Yang Yanli (Yunnan Agricultural University, Plant Protection College) ;
  • Liu Xia (Yunnan Agricultural University, Plant Protection College) ;
  • Deng Sihe (Yunnan Academy of Agricultural Sciences, Agricultural Resources and Environment Institute)
  • Received : 2024.06.24
  • Accepted : 2024.08.29
  • Published : 2024.10.01

Abstract

Bacterial wilt caused by Ralstonia solanacearum is a destructive disease that affects potato production, leading to severe yield losses. Currently, little is known about the changes in the assembly and functional adaptation of potato rhizosphere microbial communities during different stages of R. solanacearum infection. In this study, using amplicon and metagenomic sequencing approaches, we analyzed the changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere across four stages of R. solanacearum infection. The results showed that R. solanacearum infection led to significant changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere, with various microbial properties (including α,β-diversity, species composition, and community ecological functions) all being driven by R. solanacearum infection. The relative abundance of some beneficial microorganisms in the potato rhizosphere, including Firmicutes, Bacillus, Pseudomonas, and Mortierella, decreased as the duration of infection increased. Moreover, the related microbial communities played a significant role in basic metabolism and signal transduction; however, the functions involved in soil C, N, and P transformation weakened. This study provides new insights into the dynamic changes in the composition and functions of potato rhizosphere microbial communities at different stages of R. solanacearum infection to adapt to the growth promotion or disease suppression strategies of host plants, which may provide guidance for formulating future strategies to regulate microbial communities for the integrated control of soil-borne plant diseases.

Keywords

Acknowledgement

This work financially supported by the Yunnan Innovation Guidance and technology-based Enterprise Cultivation Program "Yunnan Xiangyun County Vegetable Industry Science and Technology Mission" (Grant No. 202204BI090024).

References

  1. Ahmed, W., Dai, Z., Liu, Q., Munir, S., Yang, J., Karunarathna, S. C., Li, S., Zhang, J., Ji, G. and Zhao, Z. 2022a. Microbial cross-talk: dissecting the core microbiota associated with flue-cured tobacco (Nicotiana tabacum) plants under healthy and diseased state. Front. Microbiol. 13:845310.
  2. Ahmed, W., Dai, Z., Zhang, J., Li, S., Ahmed, A., Munir, S., Liu, Q., Tan, Y., Ji, G. and Zhao, Z. 2022b. Plant-microbe interaction: mining the impact of native Bacillus amyloliquefaciens WS-10 on tobacco bacterial wilt disease and rhizosphere microbial communities. Microbiol. Spectr. 10:e01471-22.
  3. Ahmed, W., Zhou, G., Yang, J., Munir, S., Ahmed, A., Liu, Q., Zhao, Z. and Ji, G. 2022c. Bacillus amyloliquefaciens WS10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco. Egypt. J. Biol. Pest Control 32:25.
  4. Anwar, M. M., Parveen, A., Hossain, M. M., Mahamud, N. U. and Roy, R. K. 2015. Efficacy of fungicides in controlling late blight of potato. Progr. Agric. 26:103-108.
  5. Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. and Polz, M.F. 2019. A reverse ecology approach based on a biological definition of microbial populations. Cell 178:820-834.
  6. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Verges, M.-C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., Mitter, B., Ryan, M., Sarand, I., Smidt, H., Schelkle, B., Roume, H., Kiran, G. S., Selvin, J., de Souza, R. S. C., van Overbeek, L., Singh, B. K., Wagner, M., Walsh, A., Sessitsch, A. and Schloter, M. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103.
  7. Buchfink, B., Xie, C. and Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12:59-60.
  8. Cai, Q., Zhou, G., Ahmed, W., Cao, Y., Zhao, M., Li, Z. and Zhao, Z. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160:265-276.
  9. Chen, S., Zhou, Y., Chen, Y. and Gu, J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884-i890.
  10. Coll, N. S. and Valls, M. 2013. Current knowledge on the Ralstonia solanacearum type III secretion system. Microb. Biotechnol. 6:614-620.
  11. Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998.
  12. Ehiobu, J., Idamokoro, E. and Afolayan, A. 2022. Biofungicides for improvement of potato (Solanum tuberosum L) production. Scientifica (Cairo) 2022:1405900.
  13. Faist, H., Trognitz, F., Antonielli, L., Symanczik, S., White, P. J. and Sessitsch, A. 2023. Potato root-associated microbiomes adapt to combined water and nutrient limitation and have a plant genotype-specific role for plant stress mitigation. Environ. Microbiome 18:18.
  14. Fu, L., Niu, B., Zhu, Z., Wu, S. and Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150-3152.
  15. Gao, M., Xiong, C., Gao, C., Tsui, C. K. M., Wang, M.-M., Zhou, X., Zhang, A.-M. and Cai, L. 2021. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9:187.
  16. Genin, S. and Denny, T. P. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 50:67-89.
  17. Gu, Y., Wei, Z., Wang, X., Friman, V.-P., Huang, J., Wang, X., Mei, X., Xu, Y., Shen, Q. and Jousset, A. 2016. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol. Fertil. Soils 52:997-1005.
  18. Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W. and Zhang, Y. 2020. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes. AMB Express 10:72.
  19. Hyatt, D., Chen, G.-L., Locascio, P. F., Land, M. L., Larimer, F. W. and Hauser, L. J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119.
  20. Koljalg, U., Larsson, K.-H., Abarenkov, K., Nilsson, R. H., Alexander, I. J., Eberhardt, U., Erland, S., Hoiland, K., Kjoller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F. S., Tedersoo, L. and Vralstad, T. 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166:1063-1068.
  21. Lee, S.-M., Kong, H. G., Song, G. C. and Ryu, C.-M. 2021. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 15:330-347.
  22. Li, D., Liu, C.-M., Luo, R., Sadakane, K. and Lam, T.-W. 2015. MEGAHIT: an ultrafast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674-1676.
  23. Li, J., Wang, C., Liang, W. and Liu, S. 2021. Rhizosphere microbiome: the emerging barrier in plant-pathogen interactions. Front. Microbiol. 12:772420.
  24. Li, R., Li, Y., Kristiansen, K. and Wang, J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24:713-714.
  25. Li, S., Li, X., Zhu, M. R., Wang, X., Li, H. Y., Tan, X. R. and Wang, H. Y. 2024. Screening of antagonistic bacteria against potato bacterial wilt and study on its control effect in greenhouse. Crops 2:242-248 (in Chinese).
  26. Liu, X., Zhang, S., Jiang, Q., Bai, Y., Shen, G., Li, S. and Ding, W. 2016. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci. Rep. 6:36773.
  27. Magoc, T. and Salzberg, S. L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957-2963.
  28. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629.
  29. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. E., Desantis, T. Z., Andersen, G. L., Bakker, P. A. H. M. and Raaijmakers, J. M. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097-1100.
  30. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glockner, F. O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590-D596.
  31. Schulz-Bohm, K., Gerards, S., Hundscheid, M., Melenhorst, J., de Boer, W. and Garbeva, P. 2018. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 12:1252-1262.
  32. Sebastia, P., de Pedro-Jove, R., Daubech, B., Kashyap, A., Coll, N. S. and Valls, M. 2021. The bacterial wilt reservoir host Solanum dulcamara shows resistance to Ralstonia solanacearum infection. Front. Plant Sci. 12:755708.
  33. Sessitsch, A., Pfaffenbichler, N. and Mitter, B. 2019. Microbiome applications from lab to field: facing complexity. Trends Plant Sci. 24:194-198.
  34. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. and Singh, B. K. 2020. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18:607-621.
  35. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. and Dufresne, A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206:1196-1206.
  36. Wang, Y., Liu, L., Yang, J., Duan, Y., Luo, Y., Taherzadeh, M. J., Li, Y., Li, H., Awasthi, M. K. and Zhao, Z. 2020. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 715:136983.
  37. Wang, Y., Wang, L., Suo, M., Qiu, Z., Wu, H., Zhao, M. and Yang, H. 2022. Regulating root fungal community using Mortierella alpina for Fusarium oxysporum resistance in Panax ginseng. Front. Microbiol. 13:850917.
  38. Wen, T., Xie, P., Penton, C. R., Hale, L., Thomashow, L. S., Yang, S., Ding, Z., Su, Y., Yuan, J. and Shen, Q. 2022. Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin. Microbiome 10:177.
  39. Wu, Z., Hao, Z., Sun, Y., Guo, L., Huang, L., Zeng, Y., Wang, Y., Yang, L. and Chen, B. 2016. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Appl. Soil Ecol. 107:99-107.
  40. Xie, C.-H. and Yokota, A. 2006. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56:889-893.
  41. Xiong, C., Singh, B. K., He, J.-Z., Han, Y.-L., Li, P.-P., Wan, L.-H., Meng, G.-Z., Liu, S.-Y., Wang, J.-T., Wu, C.-F., Ge, A.-H. and Zhang, L.-M. 2021. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9:171.
  42. Yang, M., Gao, P., Guo, J., Qi, Y., Li, L., Yang, S. Zhao, Y., Liu, J. and Yu, L. 2024. The endophytic fungal community plays a crucial role in the resistance of host plants to necrotic bacterial pathogens. Physiol. Plant. 176:e14284.
  43. Yang, M., Qi, Y., Liu, J., Gao, P., Huang, F., Yu, L. and Chen, H. 2023. Different response mechanisms of rhizosphere microbial communities in two species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum infection. Plant Pathol. J. 39:207-219.
  44. Yuan, J., Zhao, J., Wen, T., Zhao, M., Li, R., Goossens, P., Huang, Q., Bai, Y., Vivanco, J. M., Kowalchuk, G. A., Berendsen, R. L. and Shen, Q. 2018. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6:156.
  45. Zhang, J., Liu, Y.-X., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X., Guo, X., Hui, J., Cao, S., Wang, X., Wang, C., Wang, H., Qu, B., Fan, G., Yuan, L., Garrido-Oter, R., Chu, C. and Bai, Y. 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37:676-684.
  46. Zheng, Y., Wang, J., Zhao, W., Cai, X., Xu, Y., Chen, X., Yang, M., Huang, F., Yu, L. and He, Y. 2022. Effect of bacterial wilt on fungal community composition in rhizosphere soil of tobaccos in tropical Yunnan. Plant Pathol. J. 38:203-211.