DOI QR코드

DOI QR Code

A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures

  • Dongmei Chen (Wuhan Railway Vocational College of Technology, School of Railway Engineering) ;
  • Yueshun Chen (Hubei University of Technology, School of Civil Engineering Architecture & the Environment) ;
  • Lu Ma (Wuhan Railway Vocational College of Technology, School of Railway Engineering) ;
  • Md. Habibur Rahman Sobuz (Department of Building Engineering and Construction Management, Khulna University of Engineering & Technology) ;
  • Md. Kawsarul Islam Kabbo (Department of Building Engineering and Construction Management, Khulna University of Engineering & Technology) ;
  • Md. Munir Hayet Khan (Faculty of Engineering & Quantity Surveying, INTI International University (INTI-IU))
  • Received : 2024.06.11
  • Accepted : 2024.09.09
  • Published : 2024.05.25

Abstract

Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a form of cement-based material that has a compressive strength above 150 MPa, excellent ductility, and superior durability. This composite material demonstrates innovation and has the potential to serve as a viable substitute for concrete constructions that are subjected to harsh environmental conditions. Over many decades, extensive research and progressive efforts have introduced several commercial UHPFRC compositions globally. These compositions have been specifically designed to cater to an increasing variety of applications and meet the rising need for building materials of superior quality. However, the effective manufacturing of UHPFRC relies on the composition of its materials, especially the inclusion of fiber content and the proportions in the mixture, resulting in a more compact and comparatively uniform packing of particles. UHPFRC has notable benefits in comparison to conventional concrete, yet its use is constrained by the dearth of design codes and the prohibitive expenses associated with its implementation. The study demonstrates that UHPFRC presents a viable, long-lasting option for improving sustainable construction. This is attributed to its outstanding strength properties and superior durability in resisting water and chloride ion permeability, freeze-thaw cycles, and carbonation. The analysis found that a rheology-based mixture design technique may be employed in the production of UHPFRC to provide enough flowability. The study also revealed that the use of deformed steel fibers has shown enhanced mechanical qualities in comparison to straight steel fibers. However, obstacles such as higher initial costs, the requirement for highly specialized personnel, and the absence of comprehensive literature on global UHPFRC standards that establish minimum strength criteria and testing requirements can hinder the widespread implication of UHPFRC. Finally, this review attempts to deepen our foundational conception of UHPFRC, encourages additional study and applications, and recommends an in-depth investigation of the mechanical and durability properties of UHPFRC to maximize its practicality.

Keywords

References

  1. Abbas, S., Soliman, A.M. and Nehdi, M.L. (2015), "Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages", Constr. Build. Mater., 75, 429-441. https://doi.org/10.1016/j.conbuildmat.2014.11.017
  2. Abdolpour, H., Niewiadomski, P. and Sadowski, L. (2021), "Recycling of steel fibres and spent equilibrium catalyst in ultra-high performance concrete: Literature review, research gaps, and future development", Constr. Build. Mater., 309, 125147. https://doi.org/10.1016/j.conbuildmat.2021.125147
  3. Aditto, F.S., Sobuz, M.H.R., Saha, A., Jabin, J.A., Kabbo, M.K.I., Hasan, N.M.S. and Islam, S. (2023), "Fresh, mechanical and microstructural behaviour of high-strength self-compacting concrete using supplementary cementitious materials", Case Stud. Constr. Mater., 19, e02395. https://doi.org/10.1016/j.cscm.2023.e02395
  4. Aghdasi, P., Heid, A.E. and Chao, S.-H. (2016), "Developing Ultra-High-Performance Fiber-Reinforced Concrete for Large-Scale Structural Applications", ACI Mater. J., 113(5).
  5. Ahlborn, T.M., Misson, D.L., Peuse, E.J. and Gilbertson, C.G. (2008), "Durability and strength characterization of ultra-high performance concrete under variable curing regimes", Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany.
  6. Aim, R.B. and Le Goff, P. (1968), "Effet de paroi dans les empilements desordonnes de spheres et application a la porosite de melanges binaires", Powder Technol., 1(5), 281-290. https://doi.org/10.1016/0032-5910(68)80006-3
  7. Aisheh, Y.I.A., Atrushi, D.S., Akeed, M.H., Qaidi, S. and Tayeh, B.A. (2022), "Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC)", Case Stud. Constr. Mater., 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245
  8. Alkaysi, M., El-Tawil, S., Liu, Z. and Hansen, W. (2016), "Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC)", Cement Concrete Compos., 66, 47-56. https://doi.org/10.1016/j.cemconcomp.2015.11.005
  9. Alonso, C., Castellote, M., Llorente, I. and Andrade, C. (2006), "Ground water leaching resistance of high and ultra high performance concretes in relation to the testing convection regime", Cement Concrete Res., 36(9), 1583-1594. https://doi.org/10.1016/j.cemconres.2006.04.004
  10. Angst, U., Elsener, B., Larsen, C.K. and Vennesland, O. (2009), "Critical chloride content in reinforced concrete-A review", Cement Concrete Res., 39(12), 1122-1138. https://doi.org/10.1016/j.cemconres.2009.08.006
  11. Askar, L.K., Tayeh, B.A. and Abu Bakar, B.H. (2013), "Effect of different curing conditions on the mechanical properties of UHPFC", Iranica J. Energy Environ., 4(3). https://doi.org/10.5829/idosi.ijee.2013.04.03.18
  12. Bache, H.H. (1981), Densified cement ultra-fine particle-based materials.
  13. Basha, A., Tayeh, B.A., Maglad, A.M. and Mansour, W. (2023), "Feasibility of improving shear performance of RC pile caps using various internal reinforcement configurations: Tests and finite element modelling", Eng. Struct., 289, 116340. https://doi.org/10.1016/j.engstruct.2023.116340
  14. Bertos, M.F., Simons, S., Hills, C. and Carey, P. (2004), "A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2", J. Hazard. Mater., 112(3), 193-205. https://doi.org/10.1016/j.jhazmat.2004.04.019
  15. Birchall, J., Howard, A. and Kendall, K. (1981), "Flexural strength and porosity of cements", Nature, 289(5796), 388-390. https://doi.org/10.1038/289388a0
  16. Buttignol, T.E.T., Sousa, J. and Bittencourt, T. (2017), "Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC): a review of material properties and design procedures", Revista IBRACON de estruturas e materiais, 10, 957-971. https://doi.org/10.1590/S1983-41952017000400011
  17. Camacho, E., Lopez, J.A. and Serna, P. (2012), "Definition of three levels of performance for UHPFRC-VHPFRC with available materials", Proceedings of Hipermat, pp. 249-256.
  18. Charron, J.-P., Denarie, E. and Bruhwiler, E. (2007), "Permeability of ultra high performance fiber reinforced concretes (UHPFRC) under high stresses", Mater. Struct., 40, 269-277. https://doi.org/10.1617/s11527-006-9105-0
  19. Chen, Y., Yu, R., Wang, X., Chen, J. and Shui, Z. (2018), "Evaluation and optimization of Ultra-High Performance Concrete (UHPC) subjected to harsh ocean environment: Towards an application of Layered Double Hydroxides (LDHs)", Constr. Build. Mater., 177, 51-62. https://doi.org/10.1016/j.conbuildmat.2018.03.210
  20. Chuang, M.L. and Huang, W.H. (2013), "Durability analysis testing on reactive powder concrete", Adv. Mater. Res., 811, 244-248. https://doi.org/10.4028/www.scientific.net/AMR.811.244
  21. Collepardi, S., Coppola, L., Troli, R. and Collepardi, M. (1997), "Mechanical properties of modified reactive powder concrete", ACI Special Publications, 173, 1-22.
  22. Diao, X., Song, Y., Pan, S., Cai, X., Shi, T. and Wang, L. (2024), "Enhanced dynamic compressive performance of silicon carbide whiskers-modified mortars", Constr. Build. Mater., 432, 136626. https://doi.org/10.1016/j.conbuildmat.2024.136626
  23. Dobias, D., Pernicova, R. and Mandlik, T. (2016), "Water transport properties and depth of chloride penetration in ultra high performance concrete", Key Eng. Mater., 711, 137-142. https://doi.org/10.4028/www.scientific.net/KEM.711.137
  24. Du, J., Meng, W., Khayat, K.H., Bao, Y., Guo, P., Lyu, Z., Abu-Obeidah, A., Nassif, H. and Wang, H. (2021), "New development of ultra-high-performance concrete (UHPC)", Compos. Part B: Eng., 224, 109220. https://doi.org/10.1016/j.compositesb.2021.109220
  25. El-Turki, A., Ball, R.J. and Allen, G. (2007), "The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime", Cement Concrete Res., 37(8), 1233-1240. https://doi.org/10.1016/j.cemconres.2007.05.002
  26. ELWakkad, N.Y., Heiza, K.M. and Mansour, W. (2023), "Experimental study and finite element modelling of the torsional behavior of self-compacting reinforced concrete (SCRC) beams strengthened by GFRP", Case Stud. Constr. Mater., 18, e02123. https://doi.org/10.1016/j.cscm.2023.e02123
  27. Farhat, F.A., Nicolaides, D., Kanellopoulos, A. and Karihaloo, B.L. (2007), "High performance fibre-reinforced cementitious composite (CARDIFRC)-Performance and application to retrofitting", Eng. Fract. Mech., 74(1-2), 151-167. https://doi.org/10.1016/j.engfracmech.2006.01.023
  28. Fayed, S., Badr el-din, A., Basha, A. and Mansour, W. (2022), "Shear behavior of RC pile cap beams strengthened using ultrahigh performance concrete reinforced with steel mesh fabric", Case Stud. Constr. Mater., 17, e01532. https://doi.org/10.1016/j.cscm.2022.e01532
  29. Frettlohr, B., Reineck, K.-H. and Reinhardt, H.-W. (2012), "Size and shape effect of UHPFRC prisms tested under axial tension and bending", High Performance Fiber Reinforced Cement Composites 6: HPFRCC 6, 365-372. https://doi.org/10.1007/978-94-007-2436-5_44
  30. Fuller, W.B. and Thompson, S.E. (1907), "The laws of proportioning concrete", Transact. Am. Soc. Civil Engr., 59(2), 67-143. https://doi.org/10.1061/TACEAT.0001979
  31. Furnas, C. (1931), "Grading aggregates-I.-Mathematical relations for beds of broken solids of maximum density", Indust. Eng. Chem., 23(9), 1052-1058. https://doi.org/10.1021/ie50261a017
  32. Ganesh, P. and Murthy, A.R. (2019), "Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material", Constr. Build. Mater., 197, 667-680. https://doi.org/10.1016/j.conbuildmat.2018.11.240
  33. Gao, R., Liu, Z.M., Zhang, L.Q. and Stroeven, P. (2005), "Static properties of plain reactive powder concrete beams", Key Eng. Mater., 302, 521-527. https://doi.org/10.4028/www.scientific.net/KEM.302-303.521
  34. Ghafari, E., Costa, H., Julio, E., Portugal, A. and Duraes, L. (2012a), "Enhanced durability of ultra high performance concrete by incorporating supplementary cementitious materials", In: The 2nd International Conference Microdurability, Delft, Netherland, April.
  35. Ghafari, E., Costa, H., Julio, E., Portugal, A. and Duraes, L. (2012b), "Optimization of UHPC by adding nanomaterials", Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany.
  36. Ghafari, E., Bandarabadi, M., Costa, H. and Julio, E. (2015a), "Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model", J. Mater. Civil Eng., 27(11), 04015017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001270
  37. Ghafari, E., Costa, H. and Julio, E. (2015b), "Statistical mixture design approach for eco-efficient UHPC", Cement Concrete Compos., 55, 17-25. https://doi.org/10.1016/j.cemconcomp.2014.07.016
  38. Ghasemi, M., Zhang, C., Khorshidi, H., Zhu, L. and Hsiao, P.-C. (2023), "Seismic upgrading of existing RC frames with displacement-restraint cable bracing", Eng. Struct., 282, 115764. https://doi.org/10.1016/j.engstruct.2023.115764
  39. Graybeal, B.A. (2006), Material property characterization of ultra-high performance concrete.
  40. Graybeal, B. and Tanesi, J. (2007), "Durability of an ultrahigh-performance concrete", J. Mater. Civil Eng., 19(10), 848-854. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(848)
  41. Habel, K., Viviani, M., Denarie, E. and Bruhwiler, E. (2006), "Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)", Cement Concrete Res., 36(7), 1362-1370. https://doi.org/10.1016/j.cemconres.2006.03.009
  42. Hakeem, I.Y., Mansour, W., Li, W. and Badawi, M. (2024), "Analyze the potential for employing internally welded steel plates to improve the shear response of high-strength self-compacting concrete-encased steel beams with large web openings", Eng. Struct., 304, 117636. https://doi.org/10.1016/j.engstruct.2024.117636
  43. Hassan, A. and Jones, S. (2012), "Non-destructive testing of ultra high performance fibre reinforced concrete (UHPFRC): A feasibility study for using ultrasonic and resonant frequency testing techniques", Constr. Build. Mater., 35, 361-367. https://doi.org/10.1016/j.conbuildmat.2012.04.047
  44. Hassan, A., Jones, S. and Mahmud, G. (2012), "Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)", Constr. Build. Mater., 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030
  45. He, H., Shi, J., Yu, S., Yang, J., Xu, K., He, C. and Li, X. (2024a), "Exploring green and efficient zero-dimensional carbon-based inhibitors for carbon steel: From performance to mechanism", Constr. Build. Mater., 411, 134334. https://doi.org/10.1016/j.conbuildmat.2023.134334
  46. He, L., Chen, B., Liu, Q., Chen, H., Li, H., Chow, W. T., Tang, J., Du, Z., He, Y. and Pan, J. (2024b), "A quasi-exponential distribution of interfacial voids and its effect on the interlayer strength of 3D printed concrete", Additive Manuf., 89, 104296. https://doi.org/10.1016/j.addma.2024.104296
  47. Huang, Z. and Cao, F. (2012), "Effects of nano-materials on the performance of UHPC", 材料导报 B: 研究篇, 26(9), 136-141.
  48. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021a), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266
  49. Huang, H., Yuan, Y., Zhang, W. and Li, M. (2021b), "Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint", Eng. Struct., 245, 112848. https://doi.org/10.1016/j.engstruct.2021.112848
  50. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021c), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concrete Struct. Mater., 15, 1-17. https://doi.org/10.1186/s40069-021-00476-7
  51. Huang, H., Li, M., Zhang, W. and Yuan, Y. (2022), "Seismic behavior of a friction-type artificial plastic hinge for the precast beam-column connection", Arch. Civil Mech. Eng., 22(4), 201. https://doi.org/10.1007/s43452-022-00526-1
  52. Huang, H., Li, M., Yuan, Y. and Bai, H. (2023), "Experimental research on the seismic performance of precast concrete frame with replaceable artificial controllable plastic hinges", J. Struct. Eng., 149(1), 04022222. https://doi.org/10.1061/JSENDH.STENG-11648
  53. Jiao, D., Shi, C., Yuan, Q., An, X. and Liu, Y. (2018), "Mixture design of concrete using simplex centroid design method", Cement Concrete Compos., 89, 76-88. https://doi.org/10.1016/j.cemconcomp.2018.03.001
  54. Kabbo, M., Sobuz, M. and Khan, M. (2023), "Combined influence of Waste Marble Powder and Silica Fume on the Mechanical Properties of Structural Cellular Lightweight Concrete", International Conference on Planning, Architecture & Civil Engineering, Rajshahi, Bangladesh, October.
  55. Kamen, A. (2006), "Time dependent behaviour of ultra high performance fibre reinforced concrete (UHPFRC)", Proceedings of the 6th International PhD Symposium in Civil Engineering, Zurich, Czech Republic, August.
  56. Kang, S.-T., Lee, Y., Park, Y.-D. and Kim, J.-K. (2010), "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012
  57. Kang, S.-H., Hong, S.-G. and Moon, J. (2019), "The use of rice husk ash as reactive filler in ultra-high performance concrete", Cement Concrete Res., 115, 389-400. https://doi.org/10.1016/j.cemconres.2018.09.004
  58. Kim, D.J., Park, S.H., Ryu, G.S. and Koh, K.T. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25(11), 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051
  59. Koh, K.-T., Park, J.-J., Ryu, G.-S. and Kang, S.-T. (2007), "Effect of the compressive strength of ultra-high strength steel fiber reinforced cementitious composites on curing method", KSCE J. Civil Environ. Eng. Res., 27(3A), 427-432.
  60. Kusumawardaningsih, Y., Fehling, E. and Ismail, M. (2015), "UHPC compressive strength test specimens: Cylinder or cube?", Procedia Eng., 125, 1076-1080. https://doi.org/10.1016/j.proeng.2015.11.165
  61. Lampropoulos, A., Paschalis, S.A., Tsioulou, O. and Dritsos, S.E. (2016), "Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC)", Eng. Struct., 106, 370-384. https://doi.org/10.1016/j.engstruct.2015.10.042
  62. Lantsoght, E.O. (2019), "How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups?", Compos. Part B: Eng., 175, 107079. https://doi.org/10.1016/j.compositesb.2019.107079
  63. Lee, M.-G., Wang, Y.-C. and Chiu, C.-T. (2007), "A preliminary study of reactive powder concrete as a new repair material", Constr. Build. Mater., 21(1), 182-189. https://doi.org/10.1016/j.conbuildmat.2005.06.024
  64. Li, L. and Kwan, A. (2014), "Packing density of concrete mix under dry and wet conditions", Powder Technol., 253, 514-521. https://doi.org/10.1016/j.powtec.2013.12.020
  65. Li, P., Yu, Q. and Brouwers, H. (2017), "Effect of PCE-type superplasticizer on early-age behaviour of ultra-high performance concrete (UHPC)", Constr. Build. Mater., 153, 740-750. https://doi.org/10.1016/j.conbuildmat.2017.07.145
  66. Li, J., Wu, Z., Shi, C., Yuan, Q. and Zhang, Z. (2020), "Durability of ultra-high performance concrete-A review", Constr. Build. Mater., 255, 119296. https://doi.org/10.1016/j.conbuildmat.2020.119296
  67. Li, Z., Lu, D. and Gao, X. (2021), "Optimization of mixture proportions by statistical experimental design using response surface method-A review", J. Build. Eng., 36, 102101. https://doi.org/10.1016/j.jobe.2020.102101
  68. Liao, K.-Y., Chang, P.-K., Peng, Y.-N. and Yang, C.-C. (2004), "A study on characteristics of interfacial transition zone in concrete", Cement Concrete Res., 34(6), 977-989. https://doi.org/10.1016/j.cemconres.2003.11.019
  69. Liu, J., Song, S. and Wang, L. (2009), "Durability and microstructure of reactive powder concrete", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 24, 506-509. https://doi.org/10.1007/s11595-009-3506-1
  70. Long, G., Xie, Y., Wang, P. and Jiang, Z. (2005), "Properties and micro/mecrostructure of reactive powder concrete", J. Chin. Ceram. Soc., 33(4), 456-461.
  71. Lu, D., Zhou, X., Du, X. and Wang, G. (2019), "A 3D fractional elastoplastic constitutive model for concrete material", Int. J. Solids Struct., 165, 160-175. https://doi.org/10.1016/j.ijsolstr.2019.02.004
  72. Lu, D., Zhou, X., Du, X. and Wang, G. (2020), "3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition", J. Eng. Mech., 146(11), 04020124. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001854
  73. Lu, D., Meng, F., Zhou, X., Zhuo, Y., Gao, Z. and Du, X. (2023), "A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables", J. Eng. Mech., 149(12), 04023102. https://doi.org/10.1061/JENMDT.EMENG-7206
  74. Luan, C., Wang, J., Gao, J., Wang, J., Du, P., Zhou, Z., Huang, Y. and Du, S. (2022), "Changes in fractal dimension and durability of ultra-high performance concrete (UHPC) with silica fume content", Arch. Civil Mech. Eng., 22(3), 123. https://doi.org/10.1007/s43452-022-00443-3
  75. Luo, Y., Liao, P., Pan, R., Zou, J. and Zhou, X. (2024), "Effect of bar diameter on bond performance of helically ribbed GFRP bar to UHPC", J. Build. Eng., 91, 109577. https://doi.org/10.1016/j.jobe.2024.109577
  76. Maca, P., Sovjak, R. and Vavrinik, T. (2013), "Experimental investigation of mechanical properties of UHPFRC", Procedia Eng., 65, 14-19. https://doi.org/10.1016/j.proeng.2013.09.004
  77. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y.O. (2022), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., Int. J., 45(5), 653-663. https://doi.org/10.12989/scs.2022.45.5.653
  78. Magureanu, C., Sosa, I., Negrutiu, C. and Heghes, B. (2012), "Mechanical Properties and Durability of Ultra-High-Performance Concrete", ACI Mater. J., 109(2). https://doi.org/10.14359/51683704
  79. Makita, T. and Bruhwiler, E. (2014), "Tensile fatigue behaviour of Ultra-High Performance Fibre Reinforced Concrete combined with steel rebars (R-UHPFRC)", Int. J. Fatigue, 59, 145-152. https://doi.org/10.1016/j.ijfatigue.2013.09.004
  80. Mansi, A., Sor, N.H., Hilal, N. and Qaidi, S.M. (2022), "The impact of nano clay on normal and high-performance concrete characteristics: a review", In: IOP Conference Series: Earth and Environmental Science, Vol. 961, p. 012085. https://doi.org/10.1088/1755-1315/961/1/012085
  81. Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., Int. J., 41(3), 317-334. https://doi.org/10.12989/scs.2021.41.3.317
  82. Mansour, W., Li, W., Wang, P. and Badawi, M. (2024), "Experimental and numerical evaluations of the shear performance of recycled aggregate RC beams strengthened using CFRP sheets", Eng. Struct., 301, 117368. https://doi.org/10.1016/j.engstruct.2023.117368
  83. Mehdipour, I. and Khayat, K.H. (2017), "Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste", Cement Concrete Compos., 78, 120-131. https://doi.org/10.1016/j.cemconcomp.2017.01.005
  84. Meng, W. and Khayat, K.H. (2018), "Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPC", J. Mater. Civil Eng., 30(4), 04018030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002212
  85. Meng, W., Valipour, M. and Khayat, K.H. (2017), "Optimization and performance of cost-effective ultra-high performance concrete", Mater. Struct., 50, 1-16. https://doi.org/10.1617/s11527-016-0896-3
  86. Neville, A. (1995), Properties of Concrete, Five, and Final Edition, Wiley, New York and Longman, London, USA, pp. 844.
  87. Park, J., Koh, K., Ryou, G. and Kim, S. (2007), "Evaluation on durability of ultra-high strength cementitious composites", J. Korean Soc. Civil Engr., 27(2A), 257-263.
  88. Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  89. Peng, Y.Z., Chen, K. and Hu, S.G. (2011), "Durability and microstructure of ultra-high performance concrete having high volume of steel slag powder and ultra-fine fly ash", Adv. Mater. Res., 255, 452-456. https://doi.org/10.4028/www.scientific.net/AMR.255-260.452
  90. Pierard, J., Cauberg, N. and Remy, O. (2009), "Evaluation of durability and cracking tendency of ultra-high performance concrete", Creep, shrinkage and durability mechanics of concrete and concrete structures, pp. 695-700.
  91. Pierard, J., Dooms, B. and Cauberg, N. (2012), "Evaluation of durability parameters of UHPC using accelerated lab tests", Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany.
  92. Powers, T. (1968), Properties of Fresh Concrete, John Wiley and Sons. Inc., New York, 301.
  93. Qu, D., Cai, X. and Chang, W. (2018), "Evaluating the effects of steel fibers on mechanical properties of ultra-high performance concrete using artificial neural networks", Appl. Sci., 8(7), 1120. https://doi.org/10.3390/app8071120
  94. Richard, P. and Cheyrezy, M. (1995), "Composition of reactive powder concretes", Cement Concrete Res., 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  95. Rougeau, P. and Borys, B. (2004), "Ultra high performance concrete with ultrafine particles other than silica fume", Proceedings of the International Symposium on Ultra High Performance Concrete.
  96. Roy, D.M., Gouda, G. and Bobrowsky, A. (1972), "Very high strength cement pastes prepared by hot pressing and other high pressure techniques", Cement Concrete Res., 2(3), 349-366. https://doi.org/10.1016/0008-8846(72)90075-0
  97. Scheydt, J.C. and Muller, H. (2012), "Microstructure of ultra high performance concrete (UHPC) and its impact on durability", Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany.
  98. Scheydt, J., Muller, H. and Herold, G. (2008), "Long term behaviour of ultra-high performance concrete under the attack of chlorides and aggressive waters", Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany.
  99. Schmidt, M. and Fehling, E. (2005), "Ultra-high-performance concrete: research, development and application in Europe", ACI Spec. Publ., 228(1), 51-78.
  100. Shaheen, E. and Shrive, N.G. (2006), "Optimization of mechanical properties and durability of reactive powder concrete", ACI Mater. J., 103(6), 444.
  101. Shaikh, F.U.A., Luhar, S., Arel, H.S. and Luhar, I. (2020), "Performance evaluation of Ultrahigh performance fibre reinforced concrete-A review", Constr. Build. Mater., 232, 117152. https://doi.org/10.1016/j.conbuildmat.2019.117152
  102. Shen, X. and Bruhwiler, E. (2020), "Influence of local fiber distribution on tensile behavior of strain hardening UHPFRC using NDT and DIC", Cement Concrete Res., 132, 106042. https://doi.org/10.1016/j.cemconres.2020.106042
  103. Shen, P., Lu, L., He, Y., Wang, F. and Hu, S. (2019), "The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete", Cement Concrete Res., 118, 1-13. https://doi.org/10.1016/j.cemconres.2019.01.004
  104. Shen, P., Zheng, H., Xuan, D., Lu, J.-X. and Poon, C.S. (2020), "Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete", Cement Concrete Compos., 114, 103814. https://doi.org/10.1016/j.cemconcomp.2020.103814
  105. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: Part I. Raw materials and mixture design", Constr. Build. Mater., 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  106. Sobuz, M.H.R., Joy, L.P., Akid, A.S.M., Aditto, F.S., Jabin, J.A., Hasan, N.M.S., Meraz, M.M., Kabbo, M.K.I. and Datta, S.D. (2024a), "Optimization of recycled rubber self-compacting concrete: Experimental findings and machine learning-based evaluation", Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e27793
  107. Sobuz, M.H.R., Khan, M.H., Kabbo, M.K.I., Alhamami, A.H., Aditto, F.S., Sajib, M.S., Alengaram, U.J., Mansour, W., Hasan, N.M.S. and Datta, S.D. (2024b), "Assessment of mechanical properties with machine learning modeling and durability, and microstructural characteristics of a biochar-cement mortar composite", Constr. Build. Mater., 411, 134281. https://doi.org/10.1016/j.conbuildmat.2023.134281
  108. Song, X., Wang, W., Deng, Y., Su, Y., Jia, F., Zaheer, Q. and Long, X. (2024), "Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs", Eng. Struct., 306, 117761. https://doi.org/10.1016/j.engstruct.2024.117761
  109. Sorelli, L., Constantinides, G., Ulm, F.-J. and Toutlemonde, F. (2008), "The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques", Cement Concrete Res., 38(12), 1447-1456. https://doi.org/10.1016/j.cemconres.2008.09.002
  110. Stovall, T., De Larrard, F. and Buil, M. (1986), "Linear packing density model of grain mixtures", Powder Technol., 48(1), 1-12. https://doi.org/10.1016/0032-5910(86)80058-4
  111. Sun, G., Kong, G., Liu, H. and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Can. Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj-2015-0623
  112. Tam, C.M., Tam, V.W. and Ng, K.M. (2012), "Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong", Constr. Build. Mater., 26(1), 79-89. https://doi.org/10.1016/j.conbuildmat.2011.05.006
  113. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Voo, Y.L. (2012), "Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay", Constr. Build. Mater., 36, 538-548. https://doi.org/10.1016/j.conbuildmat.2012.06.013
  114. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Voo, Y.L. (2013), "Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation-a review", Procedia Eng., 54, 525-538. https://doi.org/10.1016/j.proeng.2013.03.048
  115. Teichmann, T. and Schmidt, M. (2004), "Influence of the packing density of fine particles on structure, strength and durability of UHPC", International Symposium on Ultra High Performance Concrete.
  116. Thomas, M., Green, B., O'Neal, E., Perry, V., Hayman, S. and Hossack, A. (2012), "Marine performance of UHPC at Treat Island", Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany.
  117. Toledo Filho, R., Koenders, E., Formagini, S. and Fairbairn, E. (2012), "Performance assessment of ultra high performance fiber reinforced cementitious composites in view of sustainability", Mater. Des. (1980-2015), 36, 880-888. https://doi.org/10.1016/j.matdes.2011.09.022
  118. Tue, N.V., Ma, J. and Orgass, M. (2008), "Influence of addition method of superplasticizer on the properties of fresh UHPC", Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany.
  119. Turker, K., Hasgul, U., Birol, T., Yavas, A. and Yazici, H. (2019), "Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams", Compos. Struct., 229, 111400. https://doi.org/10.1016/j.compstruct.2019.111400
  120. Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A.L. and Dai Bui, D. (2011), "The study of using rice husk ash to produce ultra high performance concrete", Constr. Build. Mater., 25(4), 2030-2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046
  121. Wang, W., Liu, J., Agostini, F., Davy, C.A., Skoczylas, F. and Corvez, D. (2014), "Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging", Cement Concrete Res., 55, 1-13. https://doi.org/10.1016/j.cemconres.2013.09.008
  122. Wang, R., Gao, X., Huang, H. and Han, G. (2017a), "Influence of rheological properties of cement mortar on steel fiber distribution in UHPC", Constr. Build. Mater., 144, 65-73. https://doi.org/10.1016/j.conbuildmat.2017.03.173
  123. Wang, Y., An, M.-z., Yu, Z.-r., Han, S. and Ji, W.-y. (2017b), "Durability of reactive powder concrete under chloride-salt freeze-thaw cycling", Mater. Struct., 50, 1-9. https://doi.org/10.1617/s11527-016-0878-5
  124. Wang, X., Wu, D., Zhang, J., Yu, R., Hou, D. and Shui, Z. (2021), "Design of sustainable ultra-high performance concrete: A review", Constr. Build. Mater., 307, 124643. https://doi.org/10.1016/j.conbuildmat.2021.124643
  125. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500
  126. Wille, K. and Naaman, A.E. (2013), "Effect of ultra-high-performance concrete on pullout behavior of high-strength brass-coated straight steel fibers", ACI Mater. J., 110(4), 451.
  127. Wille, K., Naaman, A.E. and Parra-Montesinos, G.J. (2011), "Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way", ACI Mater. J., 108(1). https://doi.org/10.14359/51664215
  128. Wong, H.H. and Kwan, A.K. (2008), "Packing density of cementitious materials: part 1-measurement using a wet packing method", Mater. Struct., 41, 689-701. https://doi.org/10.1617/s11527-007-9274-5
  129. Wu, Z., Shi, C., He, W. and Wang, D. (2016), "Uniaxial compression behavior of ultra-high performance concrete with hybrid steel fiber", J. Mater. Civil Eng., 28(12), 06016017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001684
  130. Yang, I., Joh, C. and Kim, B. (2011), "Flexural strength of ultra high strength concrete beams reinforced with steel fibers", Procedia Eng., 14, 793-796. https://doi.org/10.1016/j.proeng.2011.07.100
  131. Yang, J., Chen, B. and Nuti, C. (2021), "Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete", Constr. Build. Mater., 302, 124104. https://doi.org/10.1016/j.conbuildmat.2021.124104
  132. Yang, J., Chen, B., Su, J., Xu, G., Zhang, D. and Zhou, J. (2022), "Effects of fibers on the mechanical properties of UHPC: A review", J. Traffic Transport. Eng. (English Edition), 9(3), 363-387. https://doi.org/10.1016/j.jtte.2022.05.001
  133. Yoo, D.-Y. and Banthia, N. (2016), "Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review", Cement Concrete Compos., 73, 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001
  134. Yoo, D.-Y., Lee, J.-H. and Yoon, Y.-S. (2013), "Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites", Compos. Struct., 106, 742-753. https://doi.org/10.1016/j.compstruct.2013.07.033
  135. Yoo, D.-Y., Kang, S.-T. and Yoon, Y.-S. (2014), "Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC", Constr. Build. Mater., 64, 67-81. https://doi.org/10.1016/j.conbuildmat.2014.04.007
  136. Yoo, D.-Y., Banthia, N. and Yoon, Y.-S. (2016), "Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars", Eng. Struct., 111, 246-262. https://doi.org/10.1016/j.engstruct.2015.12.003
  137. Yoo, D.-Y., Kim, S., Park, G.-J., Park, J.-J. and Kim, S.-W. (2017), "Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites", Compos. Struct., 174, 375-388. https://doi.org/10.1016/j.compstruct.2017.04.069
  138. Yu, R., Spiesz, P. and Brouwers, H. (2014), "Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)", Cement Concrete Res., 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002
  139. Yu, R., Spiesz, P. and Brouwers, H. (2015), "Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres", Constr. Build. Mater., 79, 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050
  140. Yudenfreund, M., Odler, I. and Brunauer, S. (1972), "Hardened portland cement pastes of low porosity I. Materials and experimental methods", Cement Concrete Res., 2(3), 313-330. https://doi.org/10.1016/0008-8846(72)90073-7
  141. Zhang, L., Liu, J., Liu, J., Zhang, Q. and Han, F. (2018), "Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate", J. Mater. Civil Eng., 30(12), 04018323. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002519
  142. Zhang, W., Lin, J., Huang, Y., Lin, B. and Kang, S. (2024), "Temperature-dependent debonding behavior of adhesively bonded CFRP-UHPC interface", Compos. Struct., 340, 118200. https://doi.org/10.1016/j.compstruct.2024.118200
  143. Zhou, M., Wu, Z., Ouyang, X., Hu, X. and Shi, C. (2021), "Mixture design methods for ultra-high-performance concrete-a review", Cement Concrete Compos., 124, 104242. https://doi.org/10.1016/j.cemconcomp.2021.104242