과제정보
The authors sincerely thank the department for giving permission to use the equipment procured from DST-FIST and AICTE MODRODS. This was completed using the equipment sponsored by DST-FIST Programme No.SR/FST/College-110/2017, Government of India. And AICTE MODROBS F.No.9.66/RIFD/MODROBS/Policy - 1/2017-18 Dt. 28.2.2019 Government of India.
참고문헌
- Afefy, H.M.E.D., Atta, A.M. and Taher, S.E.D.F. (2012), "Behavior of strengthened composite castellated beams pre-stressed with external bars: Experimental study", Arab. J. Sci. Eng., 37, 1521-1534. https://doi.org/10.1007/s13369-012-0278-2
- Ahmad, S., Masri, A. and Abou Saleh, Z. (2017), "Analytical and experimental investigation on the flexural behavior of partially encased composite beams", Alexandria Eng. J., 57(3), 1693-1712. https://doi.org/10.1016 /j.aej.2017.03.035 https://doi.org/10.1016/j.aej.2017.03.035
- Bhat, R.A. and Gupta, L.M. (2021), "Interaction of buckling modes for cellular steel beams under flexure", Int. J. Steel Struct., 21, 260-273. https://doi.org/10.1007/s13296-020-00437-y
- Chen, Y., Li, W. and Fang, C. (2017), "Performance of partially encased composite beams under static and cyclic bending", In: Structures, 9, 29-40. https://doi.org/10.1016/j.istruc.2016.09.004
- Chen, C.C., Sudibyo, T. and Erwin (2019), "Behavior of partially concrete encased steel beams under cyclic loading", Int. J. Steel Struct., 19, 255-268. https://doi.org/10.1007/s13296-018-0114-y
- Dabaon, M., El-Naggar, M.I. and Yossef, N.M. (2003), "Experimental and theoretical study of curved rolled and castellated composite beams", Alexandria Eng. J., 42, 219-230.
- Dai, X., Lam, D., Sheehan, T., Yang, J. and Zhou, K. (2020), "Effect of dowel shear connector on performance of slim-floor composite shear beams", J. Constr. Steel Res., 173, 772-778. https://doi.org/10.1016/j.jcsr. 2020.106243
- De Nardin, S. and El Debs, A.L.H. (2009), "Study of partially encased composite beams with innovative position of stud bolts", J. Constr. Steel Res., 65, 342-350. https://doi.org/10.1016/j.jcsr.2008.03.021
- Deng, S., Huang, Z., Xiao, G. and Shen, L. (2023), "Modeling the transverse connection of fully precast steel-UHPC lightweight composite bridge", Adv. Concrete Constr., Int. J., 15(6), 391-404. https://doi.org/10.12989/acc.2023.15.6.391
- Hadi, M.N. and Yuan, J.S. (2017), "Experimental investigation of composite beams reinforced with GFRP I-beam and steel bars", Constr. Build. Mater., 144, 462-474. http://dx.doi.org/10.1016/j.conbuildmat.2017.03.217
- He, J., Liu, Y., Chen, A. and Yoda, T. (2012), "Shear behavior of partially encased composite I-girder with corrugated steel web: Experimental study", J. Constr. Steel Res., 77, 193-209. https://doi.org/10.1016/j.jcsr.2012.05.005
- Hlaing, H.W. and Panedpojaman, P. (2021), "Deflection of composite cellular beams", Steel Compos. Struct., Int. J., 41(2), 223-236. https://doi.org/10.12989/scs.2021.41.2.223
- Hosseinpour, M. and Sharifi, Y. (2021), "Finite element modelling of castellated steel beams under lateral-distortional buckling mode", In: Structures, 29, 1507-1521. https://doi.org/10.1016/j.istruc.2020.12.038
- Idris, Y. and Ozbakkaloglu, T. (2014), "Flexural behavior of FRP-HSC-steel composite beams", Thin-Wall. Struct., 80, 207-216. https://doi.org/10.1016/j.tws.2014.03.011
- Jiang, Y., Hu, X., Hong, W., Gu, M. and Sun, W. (2016a), "Investigation on partially concrete encased composite beams unde rhogging moment", Adv. Struct. Eng., 20(3), 461-470. https://doi.org/10.1177/1369433216654148
- Jiang, Y., Hu, X., Hong, W. and Wang, B. (2016b), "Experimental study and theoretical analysis of partially encased continuous composite beams", J. Constr. Steel Res., 117, 152-160. https://doi.org/10.1016/j.jcsr.2015.10.009
- Ke, X., Ding, W. and Liao, D. (2021), "Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups", Adv. Concrete Constr., Int. J., 12(5), 399-409. https://doi.org/10.12989/acc.2021.12.5.399
- Limazie, T. and Chen, S. (2017), "Effective shear connection for shallow cellular composite floor beams", J. Constr. Steel Res., 128, 772-788. https://doi.org/10.1016/j.jcsr.2016.10.010
- Morkhade, S.G., Lokhande, R.S., Gund, U.D., Divate, A.B., Deosarkar, S.S. and Chavan, M.U. (2020), "Structural behaviour of castellated steel beams with reinforced web openings", Asian J. Civil Eng., 21, 1067-1078. https://doi.org/10.1007/s42107-020-00262-y
- Rossi, A., Nicoletti, R.S., de Souza, A.S.C. and Martins, C.H. (2017), "Numerical assessment of lateral distortional buckling in steel-concrete composite beams", J. Constr. Steel Res., 172, 106192. https://doi.org/10.1016/j.jcsr.2020.106192
- Safiaa, A.R., Behera, S., Jamatia, R., Kumar, R. and Mondal, S. (2023), "Experimental-numerical study on the FRP-strengthened reinforced concrete beams with a web opening", Adv. Concrete Constr., Int. J., 15(5), 321-331. https://doi.org /10.12989/ acc.2023.15.5.321
- Sharifi, Y., Hosseinpour, M., Moghbeli, A. and Sharifi, H. (2019), "Lateral torsional buckling capacity assessment of castellated steel beams using artificial neural networks", Int. J. Steel Struct., 19, 1408-1420. https://doi.org/10.1007/s13296-019-00217-3
- Sharifi, Y., Moghbeli, A., Hosseinpour, M. and Sharifi, H. (2020), "Study of neural network models for the ultimate capacities of cellular steel beams", Iran J. Sci. Technol. Transact. Civil Eng., 44, 579-589. https://doi.org/10.1007/s40996-019-00281-z
- Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J. and Iyer, N.R. (2016), "Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading", Steel Compos. Struct., Int. J., 20(1), 167-184. https://doi.org/10.12989/scs.2016.20.1.167
- Velrajkumar, G. and Muthuraj, M.P. (2020), "Effect of position of hexagonal opening in concrete encased steel castellated beams under flexural loading", Comput. Concrete, Int. J., 26(1), 95-106. https://doi.org/10.12989 /cac.2020.26.1.095 https://doi.org/10.12989/cac.2020.26.1.095
- Wang, N., Hou, H., Wang, Y., Qu, B., Zeng, X., Fang, H., Yan, H., Gao, M. and Xiong, F. (2023), "Flexural behavior of partially encased cellular beams: Tests and design implications", Eng. Struct., 293, 116631. https://doi.org/10.1016/j.engstruct.2023.116631
- Yan, J.B., Dong, X. and Wang, T. (2021), "Behaviors of novel sandwich composite beams with normal weight concrete", Steel Compos. Struct., Int. J., 38(5), 559-615. https://doi.org/10.12989/scs.2021.38.5.599
- Yang, Y., Xue, Y., Yu, Y., Ma, N. and Shao, Y. (2017), "Experimental study on flexural performance of partially precast steel reinforced concrete beams", J. Constr. Steel Res., 133, 192-201. http://dx.doi.org/10.1016/j.jcsr.2017.02.019
- Zeytinci, B.M., Sahin, M., Guler, M.A. and Tsavdaridis, K.D. (2021), "A practical design formulation for perforated beams with openings strengthened with ring type stiffeners subject to Vierendeel actions", J. Build. Eng., 43, 102915. https://doi.org/10.1016/j.jobe.2021.102915
- Zhong, W.H., Tan, Z., Meng, B., Chou, Y.Z., Zheng, Y.H. and Duan, S.C. (2023), "Numerical investigation of collapse behavior of steel-concrete composite frames containing corrugated webs with and without openings", J. Build. Eng., 66, 105889. https://doi.org/10.1016 /j.jobe.2023.105889 https://doi.org/10.1016/j.jobe.2023.105889