DOI QR코드

DOI QR Code

Flexural behaviour of fully concrete encased steel castellated section with different configuration of openings

  • G. Velrajkumar (Department of Civil Engineering, Easwari Engineering College) ;
  • M.P. Muthuraj (Department of Civil Engineering, Coimbatore Institute of Technology)
  • 투고 : 2023.11.17
  • 심사 : 2024.09.06
  • 발행 : 2024.05.25

초록

The steel-concrete composite system has been playing a vital role in the construction sector for the past two decades. By using steel and concrete together, we achieve strong load resistance with minimal deflection and bending stress. The study focuses on the numerical and analytical behaviour of concrete encased steel castellated beams and compared them with previous experiments. The study used five composite beams, including one control reinforced concrete beam (CC), one fully concrete encased steel beam (FCES), and three fully concrete encased castellated beams. The major variable is the opening configuration of the castellated beam, such as openings along the longitudinal axis, above the longitudinal axis, and below the longitudinal axis. The 150 mm × 250 mm cross section and 2000 mm in length of beams were used. Using the finite element software ANSYS, we conduct nonlinear finite element analysis for the entire beam and compare it with test data. The numerical load carrying capacity of concrete encased steel castellated beam with a hexagonal opening above the longitudinal axis (FCESCB H2) is 160 kN is closer to the experimental observation. Von Mises strain of FCESB is 0.004232, which is lower than CB and composite castellated beam. The ductility factor and energy absorption capacity of FCESB are 5.090 and 1688.47 kNm. It was observed that the configuration of the opening will influence the strength of the composite beam. Plastic moment methods were employed to estimate the ultimate load carrying capacity of the beam. In the analytical study the beams were assumed as perfectly plastic. The ultimate analytical load carrying capacity of FCESCB H2 is 21.87% higher than FCESB. It found that performing FCESCB H2 is superior to the entire specimen.

키워드

과제정보

The authors sincerely thank the department for giving permission to use the equipment procured from DST-FIST and AICTE MODRODS. This was completed using the equipment sponsored by DST-FIST Programme No.SR/FST/College-110/2017, Government of India. And AICTE MODROBS F.No.9.66/RIFD/MODROBS/Policy - 1/2017-18 Dt. 28.2.2019 Government of India.

참고문헌

  1. Afefy, H.M.E.D., Atta, A.M. and Taher, S.E.D.F. (2012), "Behavior of strengthened composite castellated beams pre-stressed with external bars: Experimental study", Arab. J. Sci. Eng., 37, 1521-1534. https://doi.org/10.1007/s13369-012-0278-2
  2. Ahmad, S., Masri, A. and Abou Saleh, Z. (2017), "Analytical and experimental investigation on the flexural behavior of partially encased composite beams", Alexandria Eng. J., 57(3), 1693-1712. https://doi.org/10.1016 /j.aej.2017.03.035 https://doi.org/10.1016/j.aej.2017.03.035
  3. Bhat, R.A. and Gupta, L.M. (2021), "Interaction of buckling modes for cellular steel beams under flexure", Int. J. Steel Struct., 21, 260-273. https://doi.org/10.1007/s13296-020-00437-y
  4. Chen, Y., Li, W. and Fang, C. (2017), "Performance of partially encased composite beams under static and cyclic bending", In: Structures, 9, 29-40. https://doi.org/10.1016/j.istruc.2016.09.004
  5. Chen, C.C., Sudibyo, T. and Erwin (2019), "Behavior of partially concrete encased steel beams under cyclic loading", Int. J. Steel Struct., 19, 255-268. https://doi.org/10.1007/s13296-018-0114-y
  6. Dabaon, M., El-Naggar, M.I. and Yossef, N.M. (2003), "Experimental and theoretical study of curved rolled and castellated composite beams", Alexandria Eng. J., 42, 219-230.
  7. Dai, X., Lam, D., Sheehan, T., Yang, J. and Zhou, K. (2020), "Effect of dowel shear connector on performance of slim-floor composite shear beams", J. Constr. Steel Res., 173, 772-778. https://doi.org/10.1016/j.jcsr. 2020.106243
  8. De Nardin, S. and El Debs, A.L.H. (2009), "Study of partially encased composite beams with innovative position of stud bolts", J. Constr. Steel Res., 65, 342-350. https://doi.org/10.1016/j.jcsr.2008.03.021
  9. Deng, S., Huang, Z., Xiao, G. and Shen, L. (2023), "Modeling the transverse connection of fully precast steel-UHPC lightweight composite bridge", Adv. Concrete Constr., Int. J., 15(6), 391-404. https://doi.org/10.12989/acc.2023.15.6.391
  10. Hadi, M.N. and Yuan, J.S. (2017), "Experimental investigation of composite beams reinforced with GFRP I-beam and steel bars", Constr. Build. Mater., 144, 462-474. http://dx.doi.org/10.1016/j.conbuildmat.2017.03.217
  11. He, J., Liu, Y., Chen, A. and Yoda, T. (2012), "Shear behavior of partially encased composite I-girder with corrugated steel web: Experimental study", J. Constr. Steel Res., 77, 193-209. https://doi.org/10.1016/j.jcsr.2012.05.005
  12. Hlaing, H.W. and Panedpojaman, P. (2021), "Deflection of composite cellular beams", Steel Compos. Struct., Int. J., 41(2), 223-236. https://doi.org/10.12989/scs.2021.41.2.223
  13. Hosseinpour, M. and Sharifi, Y. (2021), "Finite element modelling of castellated steel beams under lateral-distortional buckling mode", In: Structures, 29, 1507-1521. https://doi.org/10.1016/j.istruc.2020.12.038
  14. Idris, Y. and Ozbakkaloglu, T. (2014), "Flexural behavior of FRP-HSC-steel composite beams", Thin-Wall. Struct., 80, 207-216. https://doi.org/10.1016/j.tws.2014.03.011
  15. Jiang, Y., Hu, X., Hong, W., Gu, M. and Sun, W. (2016a), "Investigation on partially concrete encased composite beams unde rhogging moment", Adv. Struct. Eng., 20(3), 461-470. https://doi.org/10.1177/1369433216654148
  16. Jiang, Y., Hu, X., Hong, W. and Wang, B. (2016b), "Experimental study and theoretical analysis of partially encased continuous composite beams", J. Constr. Steel Res., 117, 152-160. https://doi.org/10.1016/j.jcsr.2015.10.009
  17. Ke, X., Ding, W. and Liao, D. (2021), "Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups", Adv. Concrete Constr., Int. J., 12(5), 399-409. https://doi.org/10.12989/acc.2021.12.5.399
  18. Limazie, T. and Chen, S. (2017), "Effective shear connection for shallow cellular composite floor beams", J. Constr. Steel Res., 128, 772-788. https://doi.org/10.1016/j.jcsr.2016.10.010
  19. Morkhade, S.G., Lokhande, R.S., Gund, U.D., Divate, A.B., Deosarkar, S.S. and Chavan, M.U. (2020), "Structural behaviour of castellated steel beams with reinforced web openings", Asian J. Civil Eng., 21, 1067-1078. https://doi.org/10.1007/s42107-020-00262-y
  20. Rossi, A., Nicoletti, R.S., de Souza, A.S.C. and Martins, C.H. (2017), "Numerical assessment of lateral distortional buckling in steel-concrete composite beams", J. Constr. Steel Res., 172, 106192. https://doi.org/10.1016/j.jcsr.2020.106192
  21. Safiaa, A.R., Behera, S., Jamatia, R., Kumar, R. and Mondal, S. (2023), "Experimental-numerical study on the FRP-strengthened reinforced concrete beams with a web opening", Adv. Concrete Constr., Int. J., 15(5), 321-331. https://doi.org /10.12989/ acc.2023.15.5.321
  22. Sharifi, Y., Hosseinpour, M., Moghbeli, A. and Sharifi, H. (2019), "Lateral torsional buckling capacity assessment of castellated steel beams using artificial neural networks", Int. J. Steel Struct., 19, 1408-1420. https://doi.org/10.1007/s13296-019-00217-3
  23. Sharifi, Y., Moghbeli, A., Hosseinpour, M. and Sharifi, H. (2020), "Study of neural network models for the ultimate capacities of cellular steel beams", Iran J. Sci. Technol. Transact. Civil Eng., 44, 579-589. https://doi.org/10.1007/s40996-019-00281-z
  24. Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J. and Iyer, N.R. (2016), "Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading", Steel Compos. Struct., Int. J., 20(1), 167-184. https://doi.org/10.12989/scs.2016.20.1.167
  25. Velrajkumar, G. and Muthuraj, M.P. (2020), "Effect of position of hexagonal opening in concrete encased steel castellated beams under flexural loading", Comput. Concrete, Int. J., 26(1), 95-106. https://doi.org/10.12989 /cac.2020.26.1.095 https://doi.org/10.12989/cac.2020.26.1.095
  26. Wang, N., Hou, H., Wang, Y., Qu, B., Zeng, X., Fang, H., Yan, H., Gao, M. and Xiong, F. (2023), "Flexural behavior of partially encased cellular beams: Tests and design implications", Eng. Struct., 293, 116631. https://doi.org/10.1016/j.engstruct.2023.116631
  27. Yan, J.B., Dong, X. and Wang, T. (2021), "Behaviors of novel sandwich composite beams with normal weight concrete", Steel Compos. Struct., Int. J., 38(5), 559-615. https://doi.org/10.12989/scs.2021.38.5.599
  28. Yang, Y., Xue, Y., Yu, Y., Ma, N. and Shao, Y. (2017), "Experimental study on flexural performance of partially precast steel reinforced concrete beams", J. Constr. Steel Res., 133, 192-201. http://dx.doi.org/10.1016/j.jcsr.2017.02.019
  29. Zeytinci, B.M., Sahin, M., Guler, M.A. and Tsavdaridis, K.D. (2021), "A practical design formulation for perforated beams with openings strengthened with ring type stiffeners subject to Vierendeel actions", J. Build. Eng., 43, 102915. https://doi.org/10.1016/j.jobe.2021.102915
  30. Zhong, W.H., Tan, Z., Meng, B., Chou, Y.Z., Zheng, Y.H. and Duan, S.C. (2023), "Numerical investigation of collapse behavior of steel-concrete composite frames containing corrugated webs with and without openings", J. Build. Eng., 66, 105889. https://doi.org/10.1016 /j.jobe.2023.105889 https://doi.org/10.1016/j.jobe.2023.105889