DOI QR코드

DOI QR Code

Predicting the impact of global warming on carbonation of reinforced concrete structures in Zambia and Japan

  • Wanzi A. Zulu (Department of Civil and Environmental Engineering, Kanazawa Institute of Technology) ;
  • Miyazato Shinichi (Department of Civil and Environmental Engineering, Kanazawa Institute of Technology)
  • 투고 : 2023.09.05
  • 심사 : 2024.08.29
  • 발행 : 2024.05.25

초록

The problem of carbonation-induced corrosion has become a concern in recent times, especially in the 21st century, due to the increase in global temperatures and carbon dioxide (CO2) concentration in the atmosphere possessing a significant threat to the durability of reinforced concrete (RC) structures worldwide, especially in inland tropical regions where carbonation is the most significant concrete degradation mechanism. Therefore, a study was conducted to predict the impact of global warming on the carbonation of RC structures in Lusaka, Zambia, and Tokyo, Japan. The Impact was estimated based on a carbonation meta-model that applies the analytic solution of Fick's 1st law using literature-based concrete mix design data and forecasted local temperature and CO2 concentration data over a 100-year period with relative humidity assumed constant. The results showed that CO2 diffusion increased between 17-31%, effecting a 40-45% rise in carbonation coefficient and a significant reduction in corrosion initiation time of 50-52% in the two cities. Moreover, for the same water-cement ratio, Lusaka showed almost twice higher carbonation coefficient values and one third shorter corrosion initiation time compared to Tokyo, mainly due to its higher temperature and low relative humidity. Additionally, the carbonation propagation depth at the end of 100 years was between 12-22 mm in Tokyo and 18-40 mm in Lusaka. These findings indicate that RC structures in these cities are at risk of rapid deterioration, especially in Lusaka, where they are more vulnerable.

키워드

과제정보

The support of Japan International Cooperation Agency (JICA) throughout the study is highly acknowledged by the authors.

참고문헌

  1. Al-Ameeri, A.S., Rafiq, M.I., Tsioulou, O. and Rybdylova, O. (2021), "Impact of climate change on carbonation in concrete due to carbon dioxide ingress: Experimental investigation and modelling", J. Build. Eng., 44, 102594. https://doi.org/10.1016/j.jobe.2021.102594
  2. Alexander, M.G., Mackechnie, J.R. and Yam, W. (2007), "Carbonation of concrete bridge structures in three South African localities", Cement Concrete Compos., 29(10), 750-759. https://doi.org/10.1016/j.cemconcomp.2007.06.005
  3. Amoako-Attah, J., B-Jahromi, A., Amoako-Attah, J. and B-Jahromi, A. (2013), "Impact of future climate change on UK building performances", Adv. Environ. Res., 2(3), 203-227. https://doi.org/10.12989/AER.2013.2.3.203
  4. Barreto, M.M., Timm, J.F.G., Passuello, A., Dal Molin, D.C.C. and Masuero, J.R. (2021), "Life cycle costs and impacts of massive slabs with varying concrete cover", Clean. Eng. Technol., 5, 100256. https://doi.org/10.1016/j.clet.2021.100256
  5. Basheer, P.A.M., Russell, D.P. and Rankin, G.I.B. (1999), "Design of concrete to resist carbonation rate of carbonation of concrete", Proceeding of the 8th International Conference on durability of Building Materials and Components (8dbmc), Vancouver, Canada.
  6. Bastidas-Arteaga, E., Schoefs, F., Stewart, M.G. and Wang, X. (2013), "Influence of global warming on durability of corroding RC structures: A probabilistic approach", Eng. Struct., 51, 259-266. https://doi.org/10.1016/j.engstruct.2013.01.006
  7. Bastidas-Arteaga, E., Rianna, G., Gervasio, H. and Nogal, M. (2022), "Multi-region lifetime assessment of reinforced concrete structures subjected to carbonation and climate change", J. Struct., 45, 886-899. https://doi.org/10.1016/j.istruc.2022.09.061
  8. CEB Bulletin d'Information, No. 195, 196 (1990), CEB-FIP Model Code: design code", Comitee Euro-International du Beton CEB Bulletin d'Information, No. 195, 196, T. Telford, Michigan, IL, USA.
  9. Chen, G., Lv, Y., Zhang, Y. and Yang, M. (2021), "Carbonation depth predictions in concrete structures under changing climate condition in China", Eng. Fail. Anal., 119, 104990. https://doi.org/10.1016/j.engfailanal.2020.104990
  10. Clifton, J.R. (1993), "Predicting the service life of concrete", ACI Mater. J., 90(6), 611-617. https://doi.org/10.14359/9756
  11. Climate monitoring (2022a), Climate at a glance: global time series (1901-2022), Accessed April 24, 2023. Available from: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/africa/land/ytd/12/1910-2022
  12. Climate monitoring (2022b), Climate at a glance: global time series (1901-2022), Accessed April 24, 2023. Available from https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/asia/land/ytd/12/1910-2022
  13. Daniel, D.E (Ed) (2012), Geotechnical Practice for Waste Disposal, Springer Science and Business Media, New York, NY, USA.
  14. Djeddi, L. and Amirat, A. (2020), "Corrosion initiation time models in RC coastal structures based on reliability approach", Adv. Concrete Constr., Int. J., 9(2), 149-159. https://doi.org/10.12989/acc.2020.9.2.149
  15. Ekolu, S.O. (2020a), "Implications of global CO2 emissions on natural carbonation and service lifespan of concrete infrastructures-reliability analysis", Cement Concrete Compos., 114, 103744. https://doi.org/10.1016/j.cemconcomp.2020.103744
  16. Ekolu, S.O. (2020b), "Model for natural carbonation prediction (NCP): Practical application worldwide to real life functioning concrete structures", Eng. Struct., 224, 111126. https://doi.org/10.1016/j.engstruct.2020.111126
  17. EN 197: Composition, Specifications, and conformity criteria for common cements.
  18. EN 206: Concrete. Specification, performance, production and conformity.
  19. Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.M. and Morgan, V.I. (1998), "Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores (1006 AD-1978 AD)", Report No. osti: 1394156; Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE), USA. https://doi.org/10.3334/CDIAC/ATG.011
  20. Garboczi, E.J. and Bentz, D.P. (1998), "Multiscale analytical/numerical theory of the diffusivity of concrete", Adv. Cem. Based Mater., 8(2), 77-88. https://doi.org/10.1016/S1065-7355(98)00010-8
  21. George, K., Ziska, L.H., Bunce, J.A. and Quebedeaux, B. (2007), "Elevated Atmospheric CO2 Concentration and temperature across an urban-rural transect", Atmos. Environ., 41(35), 7654-7665. https://doi.org/10.1016/J.ATMOSENV.2007.08.018
  22. Global Annual Climate Report (2020), Accessed April 24, 2023. Available from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202013
  23. Henry, M. and Tojo, Y. (2021), "Impacts of global warming and variable airborne chloride exposure on Concrete Structures in Hokkaido, Japan", Proceedings of the Sixteenth East Asian-Pacific Conference on Structural Engineering and Construction, Brisbane, Australia, December.
  24. Hyvert, N., Sellier, A., Duprat, F., Rougeau, P. and Francisco, P. (2010), "Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation", Cement Concrete Res., 40(11), 1582-1589. https://doi.org/10.1016/j.cemconres.2010.06.010
  25. Ikotun, J.O. and Ekolu, S.E. (2012), "Essential parameters for strength-based service life modeling of reinforced concrete structures-a review", Concrete Repair, Rehabilitation and Retrofitting III: 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-3, Cape Town, South Africa, September.
  26. Inam, I., Nasiry, M.K., Sediqmal, M., Wahdat, M.N. and Momand, I. (2021), "A study on the carbonation rate of concrete exposed in different climatic conditions", Aust. J. Eng. Innov. Technol., 3(6), 128-136. https://doi.org/10.34104/ajeit.021.01280136
  27. Japan Meteorological Agency (2021), Yearly average carbon dioxide concentration (1985-2021), Accessed May 10, 2023. Available at https://www.data.jma.go.jp/ghg/kanshi/co2map/co2map
  28. Jiang, C., Gu, X., Huang, Q. and Zhang, W. (2018), "Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads", Cement Concrete Compos., 93, 140-154. https://doi.org/10.1016/j.cemconcomp.2018.07.007
  29. Khunthongkeaw, J., Tangtermsirikul, S. and Leelawat, T. (2006), "A study on carbonation depth prediction for fly ash concrete", Constr. Build. Mater., 20(9), 744-753. https://doi.org/10.1016/j.conbuildmat.2005.01.052
  30. Koerner, B. and Klopatek, J. (2002), "Anthropogenic and natural CO2 emission sources in an arid urban environment", Environ. Pollut., 116, S45-S51. https://doi.org/10.1016/S0269-7491(01)00246-9
  31. Korichi, Y., Merah, A., Khenfer, M.M. and Krobba, B. (2022), "Effectiveness study of a cement mortar coating based on dune sand on the carbonation of concrete", Adv. Concrete Constr., Int. J., 13(4), 315-325. https://doi.org/10.12989/acc.2022.13.4.315
  32. Loo, Y.H., Chin, M.S., Tam, C.T. and Ong, K.C.G. (1994), "A carbonation prediction model for accelerated carbonation testing of concrete", Mag. Concrete Res., 46(168), 191-200. https://doi.org/10.1680/macr.1994.46.168.191
  33. Luciano, J. and Miltenberger, M. (1999), "Predicting chloride diffusion coefficients from concrete mixture proportions", Mater. J., 96(6), 698-702. https//doi.org/10.14359/797
  34. Maekawa, K., Ishida, T. and Kishi, T. (2008), "Multi-scale modeling of structural concrete", Crc Press. Accessed: Nov. 05, 2023. https://doi.org/10.1201/9781482288599
  35. Medeiros-Junior, R.A., Lima, M.G., Yazigi, R. and Medeiros, M.H. (2015), "Carbonation depth in 57 years old concrete structures", Steel Compos. Struct., Int. J., 19(4), 953-966. http://doi.org/10.12989/scs.2015.19.4.953
  36. Mizzi, B., Wang, Y. and Borg, R.P. (2018), "Effects of climate change on structures; analysis of carbonation-induced corrosion in Reinforced Concrete Structures in Malta", Iop conference series: Mater. Sci. Eng., 442, 012023. https://doi.org/10.1088/1757-899X/442/1/012023
  37. Monteiro, I., Branco, F.A., de Brito, J. and Neves, R. (2012), "Statistical analysis of the carbonation coefficient in open air concrete structures", Constr. Build. Mater., 29, 263-269. https://doi.org/10.1016/j.conbuildmat.2011.10.028
  38. Oke, T.R. and Maxwell, G.B. (1975), "Urban heat island dynamics in Montreal and Vancouver", Atmos. Environ., 9(2), 191-200. https://doi.org/10.1016/0004-6981(75)90067-0
  39. Papadakis, V., Vayenas, C. and Fardis, M. (1991), "Physical and chemical characteristics affecting the durability of concrete", ACI Mater. J., 88(2), 186-196. https://hal.science/hal-03679518
  40. Patel, R.A., Phung, Q.T., Seetharam, S.C., Perko, J., Jacques, D., Maes, N. and Van Breugel, K. (2016), "Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches", Cement Concrete Res., 90, 52-72. https://doi.org/10.1016/j.cemconres.2016.09.015
  41. Roy, S.K., Poh, K.B. and Northwood, D.O. (1999), "Durability of concrete-accelerated carbonation and weathering studies", Build. Environ., 34(5), 597-606. https://doi.org/10.1016/S0360-1323(98)00042-0
  42. Ruiz, C.C., Caballero, J.L., Martinez, J.H. and Aperador, W.A. (2020), "Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution", Adv. Concrete Constr., Int. J., 9(3), 257-265. https://doi.org/10.12989/acc.2020.9.3.257
  43. Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1995), "2-D model for carbonation and moisture/heat flow in porous materials", Cem. Concrete Res., 25(8), 1703-1712. https://doi.org/10.1016/0008-8846(95)00166-2
  44. Sarja, A. and Vesikari, E. (1996), "Durability design of concrete structures", Proceedings of the RILEM report on TC130-CSL, Series 14. E & FN Spon, UK. https://doi.org/10.1201/9781482271690
  45. Smithson, P.A. (2002), "IPCC, 2001: climate change 2001: the scientific basis", Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, USA. https://doi.org/10.1002/joc.763.
  46. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. and Miller, H. (2007), "IPCC fourth assessment report (AR4)", Climate change, 374.
  47. Sperling, F.N., Washington, R. and Whittaker, R.J. (2004), "Future climate change of the subtropical North Atlantic: implications for the cloud forests of Tenerife", Clim. Change., 65(1-2), 103-123. https://doi.org/10.1023/B:CLIM.0000037488.33377.bf
  48. Stewart, M.G., Wang, X. and Nguyen, M.N. (2011), "Climate change impact and risks of concrete infrastructure deterioration", Eng. Struct., 33(4), 1326-1337. https://doi.org/10.1016/j.engstruct.2011.01.010
  49. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M., Allen, S.K., Boschung, J. and Midgley, P.M. (2014), "Climate Change 2013: The physical science basis", contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change, Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
  50. Szulejko, J.E., Kumar, P., Deep, A. and Kim, K.H. (2017), "Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor", Atmos. Pollut. Res., 8(1), 136-140. https://doi.org/10.1016/j.apr.2016.08.002
  51. Ta, V.L., Bonnet, S., Senga Kiesse, T. and Ventura, A. (2016), "A new meta-model to calculate carbonation front depth within concrete structures", Constr. Build. Mater., 129, 172-181. https://doi.org/10.1016/j.conbuildmat.2016.10.103
  52. Talukdar, S., Banthia, N., Grace, J.R. and Cohen, S. (2012), "Carbonation in concrete infrastructure in the context of global climate change: Part 2 - Canadian urban simulations", Cement Concrete Compos., 34(8), 931-935. https://doi.org/10.1016/j.cemconcomp.2012.04.012
  53. The Climate in Japan (2021), Accessed December 08, 2022. Available from https://www.worlddata.info/asia/Japan/climate.php
  54. The Climate in Zamba (2021), Accessed December 08, 2022. Available from https://www.worlddata.info/africa/Zambia/climate.php
  55. Uddin, M.T., Islam, M.N., Sutradhar, S.K., Chowdhury, M.H.R., Hasnat, A. and Khatib, J.M. (2013), "Carbonation coefficient of concrete in Dhaka City", Proceedings of the third International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan.
  56. Van Wijngaarden, W.A. and Vincent, L.A. (2005), "Examination of discontinuities in hourly surface relative humidity in Canada during 1953-2003", J. Geophys. Res. Atmos., 110(22), 1-9. https://doi.org/10.1029/2005JD005925
  57. Vuille, M., Bradley, R.S., Werner, M. and Keimig, F. (2003), "20th century climate change in the tropical Andes: observations and model results: Climate variability and change in high elevation regions: Past, present & future", Climate Change., 15, 75-99. https://doi.org/10.1007/978-94-015-1252-7_5
  58. Wang, X.Y. and Luan, Y. (2018), "Evaluation of carbonation service life of slag blended concrete considering climate changes", Comput. Concrete, Int. J., 21(4), 419-429. https://doi.org/10.12989/cac.2018.21.4.419
  59. Wang, X., Stewart, M.G., Nguyen, M., Wang, X., Nguyen, M, and Stewart, M.G. (2012), "Impact of climate change on corrosion and damage to concrete infrastructure in Australia", Clim. Change, 110, 941-957. https://doi.org/10.1007/s10584-011-0124-7
  60. Yoon, I.S. and Chang, C.H. (2020), "Time evolution of CO2 diffusivity of carbonated concrete", Appl. Sci., 10(24), 8910. https://doi.org/10.3390/app10248910
  61. Yoon, I.S., Copuroglu, O. and Park, K.B. (2007), "Effect of global climatic change on carbonation progress of concrete", Atmos. Environ., 41(34), 7274-7285. https://doi.org/10.1016/j.atmosenv.2007.05.028