과제정보
The support of Japan International Cooperation Agency (JICA) throughout the study is highly acknowledged by the authors.
참고문헌
- Al-Ameeri, A.S., Rafiq, M.I., Tsioulou, O. and Rybdylova, O. (2021), "Impact of climate change on carbonation in concrete due to carbon dioxide ingress: Experimental investigation and modelling", J. Build. Eng., 44, 102594. https://doi.org/10.1016/j.jobe.2021.102594
- Alexander, M.G., Mackechnie, J.R. and Yam, W. (2007), "Carbonation of concrete bridge structures in three South African localities", Cement Concrete Compos., 29(10), 750-759. https://doi.org/10.1016/j.cemconcomp.2007.06.005
- Amoako-Attah, J., B-Jahromi, A., Amoako-Attah, J. and B-Jahromi, A. (2013), "Impact of future climate change on UK building performances", Adv. Environ. Res., 2(3), 203-227. https://doi.org/10.12989/AER.2013.2.3.203
- Barreto, M.M., Timm, J.F.G., Passuello, A., Dal Molin, D.C.C. and Masuero, J.R. (2021), "Life cycle costs and impacts of massive slabs with varying concrete cover", Clean. Eng. Technol., 5, 100256. https://doi.org/10.1016/j.clet.2021.100256
- Basheer, P.A.M., Russell, D.P. and Rankin, G.I.B. (1999), "Design of concrete to resist carbonation rate of carbonation of concrete", Proceeding of the 8th International Conference on durability of Building Materials and Components (8dbmc), Vancouver, Canada.
- Bastidas-Arteaga, E., Schoefs, F., Stewart, M.G. and Wang, X. (2013), "Influence of global warming on durability of corroding RC structures: A probabilistic approach", Eng. Struct., 51, 259-266. https://doi.org/10.1016/j.engstruct.2013.01.006
- Bastidas-Arteaga, E., Rianna, G., Gervasio, H. and Nogal, M. (2022), "Multi-region lifetime assessment of reinforced concrete structures subjected to carbonation and climate change", J. Struct., 45, 886-899. https://doi.org/10.1016/j.istruc.2022.09.061
- CEB Bulletin d'Information, No. 195, 196 (1990), CEB-FIP Model Code: design code", Comitee Euro-International du Beton CEB Bulletin d'Information, No. 195, 196, T. Telford, Michigan, IL, USA.
- Chen, G., Lv, Y., Zhang, Y. and Yang, M. (2021), "Carbonation depth predictions in concrete structures under changing climate condition in China", Eng. Fail. Anal., 119, 104990. https://doi.org/10.1016/j.engfailanal.2020.104990
- Clifton, J.R. (1993), "Predicting the service life of concrete", ACI Mater. J., 90(6), 611-617. https://doi.org/10.14359/9756
- Climate monitoring (2022a), Climate at a glance: global time series (1901-2022), Accessed April 24, 2023. Available from: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/africa/land/ytd/12/1910-2022
- Climate monitoring (2022b), Climate at a glance: global time series (1901-2022), Accessed April 24, 2023. Available from https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/asia/land/ytd/12/1910-2022
- Daniel, D.E (Ed) (2012), Geotechnical Practice for Waste Disposal, Springer Science and Business Media, New York, NY, USA.
- Djeddi, L. and Amirat, A. (2020), "Corrosion initiation time models in RC coastal structures based on reliability approach", Adv. Concrete Constr., Int. J., 9(2), 149-159. https://doi.org/10.12989/acc.2020.9.2.149
- Ekolu, S.O. (2020a), "Implications of global CO2 emissions on natural carbonation and service lifespan of concrete infrastructures-reliability analysis", Cement Concrete Compos., 114, 103744. https://doi.org/10.1016/j.cemconcomp.2020.103744
- Ekolu, S.O. (2020b), "Model for natural carbonation prediction (NCP): Practical application worldwide to real life functioning concrete structures", Eng. Struct., 224, 111126. https://doi.org/10.1016/j.engstruct.2020.111126
- EN 197: Composition, Specifications, and conformity criteria for common cements.
- EN 206: Concrete. Specification, performance, production and conformity.
- Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.M. and Morgan, V.I. (1998), "Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores (1006 AD-1978 AD)", Report No. osti: 1394156; Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE), USA. https://doi.org/10.3334/CDIAC/ATG.011
- Garboczi, E.J. and Bentz, D.P. (1998), "Multiscale analytical/numerical theory of the diffusivity of concrete", Adv. Cem. Based Mater., 8(2), 77-88. https://doi.org/10.1016/S1065-7355(98)00010-8
- George, K., Ziska, L.H., Bunce, J.A. and Quebedeaux, B. (2007), "Elevated Atmospheric CO2 Concentration and temperature across an urban-rural transect", Atmos. Environ., 41(35), 7654-7665. https://doi.org/10.1016/J.ATMOSENV.2007.08.018
- Global Annual Climate Report (2020), Accessed April 24, 2023. Available from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202013
- Henry, M. and Tojo, Y. (2021), "Impacts of global warming and variable airborne chloride exposure on Concrete Structures in Hokkaido, Japan", Proceedings of the Sixteenth East Asian-Pacific Conference on Structural Engineering and Construction, Brisbane, Australia, December.
- Hyvert, N., Sellier, A., Duprat, F., Rougeau, P. and Francisco, P. (2010), "Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation", Cement Concrete Res., 40(11), 1582-1589. https://doi.org/10.1016/j.cemconres.2010.06.010
- Ikotun, J.O. and Ekolu, S.E. (2012), "Essential parameters for strength-based service life modeling of reinforced concrete structures-a review", Concrete Repair, Rehabilitation and Retrofitting III: 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR-3, Cape Town, South Africa, September.
- Inam, I., Nasiry, M.K., Sediqmal, M., Wahdat, M.N. and Momand, I. (2021), "A study on the carbonation rate of concrete exposed in different climatic conditions", Aust. J. Eng. Innov. Technol., 3(6), 128-136. https://doi.org/10.34104/ajeit.021.01280136
- Japan Meteorological Agency (2021), Yearly average carbon dioxide concentration (1985-2021), Accessed May 10, 2023. Available at https://www.data.jma.go.jp/ghg/kanshi/co2map/co2map
- Jiang, C., Gu, X., Huang, Q. and Zhang, W. (2018), "Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads", Cement Concrete Compos., 93, 140-154. https://doi.org/10.1016/j.cemconcomp.2018.07.007
- Khunthongkeaw, J., Tangtermsirikul, S. and Leelawat, T. (2006), "A study on carbonation depth prediction for fly ash concrete", Constr. Build. Mater., 20(9), 744-753. https://doi.org/10.1016/j.conbuildmat.2005.01.052
- Koerner, B. and Klopatek, J. (2002), "Anthropogenic and natural CO2 emission sources in an arid urban environment", Environ. Pollut., 116, S45-S51. https://doi.org/10.1016/S0269-7491(01)00246-9
- Korichi, Y., Merah, A., Khenfer, M.M. and Krobba, B. (2022), "Effectiveness study of a cement mortar coating based on dune sand on the carbonation of concrete", Adv. Concrete Constr., Int. J., 13(4), 315-325. https://doi.org/10.12989/acc.2022.13.4.315
- Loo, Y.H., Chin, M.S., Tam, C.T. and Ong, K.C.G. (1994), "A carbonation prediction model for accelerated carbonation testing of concrete", Mag. Concrete Res., 46(168), 191-200. https://doi.org/10.1680/macr.1994.46.168.191
- Luciano, J. and Miltenberger, M. (1999), "Predicting chloride diffusion coefficients from concrete mixture proportions", Mater. J., 96(6), 698-702. https//doi.org/10.14359/797
- Maekawa, K., Ishida, T. and Kishi, T. (2008), "Multi-scale modeling of structural concrete", Crc Press. Accessed: Nov. 05, 2023. https://doi.org/10.1201/9781482288599
- Medeiros-Junior, R.A., Lima, M.G., Yazigi, R. and Medeiros, M.H. (2015), "Carbonation depth in 57 years old concrete structures", Steel Compos. Struct., Int. J., 19(4), 953-966. http://doi.org/10.12989/scs.2015.19.4.953
- Mizzi, B., Wang, Y. and Borg, R.P. (2018), "Effects of climate change on structures; analysis of carbonation-induced corrosion in Reinforced Concrete Structures in Malta", Iop conference series: Mater. Sci. Eng., 442, 012023. https://doi.org/10.1088/1757-899X/442/1/012023
- Monteiro, I., Branco, F.A., de Brito, J. and Neves, R. (2012), "Statistical analysis of the carbonation coefficient in open air concrete structures", Constr. Build. Mater., 29, 263-269. https://doi.org/10.1016/j.conbuildmat.2011.10.028
- Oke, T.R. and Maxwell, G.B. (1975), "Urban heat island dynamics in Montreal and Vancouver", Atmos. Environ., 9(2), 191-200. https://doi.org/10.1016/0004-6981(75)90067-0
- Papadakis, V., Vayenas, C. and Fardis, M. (1991), "Physical and chemical characteristics affecting the durability of concrete", ACI Mater. J., 88(2), 186-196. https://hal.science/hal-03679518
- Patel, R.A., Phung, Q.T., Seetharam, S.C., Perko, J., Jacques, D., Maes, N. and Van Breugel, K. (2016), "Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches", Cement Concrete Res., 90, 52-72. https://doi.org/10.1016/j.cemconres.2016.09.015
- Roy, S.K., Poh, K.B. and Northwood, D.O. (1999), "Durability of concrete-accelerated carbonation and weathering studies", Build. Environ., 34(5), 597-606. https://doi.org/10.1016/S0360-1323(98)00042-0
- Ruiz, C.C., Caballero, J.L., Martinez, J.H. and Aperador, W.A. (2020), "Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution", Adv. Concrete Constr., Int. J., 9(3), 257-265. https://doi.org/10.12989/acc.2020.9.3.257
- Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1995), "2-D model for carbonation and moisture/heat flow in porous materials", Cem. Concrete Res., 25(8), 1703-1712. https://doi.org/10.1016/0008-8846(95)00166-2
- Sarja, A. and Vesikari, E. (1996), "Durability design of concrete structures", Proceedings of the RILEM report on TC130-CSL, Series 14. E & FN Spon, UK. https://doi.org/10.1201/9781482271690
- Smithson, P.A. (2002), "IPCC, 2001: climate change 2001: the scientific basis", Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, USA. https://doi.org/10.1002/joc.763.
- Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. and Miller, H. (2007), "IPCC fourth assessment report (AR4)", Climate change, 374.
- Sperling, F.N., Washington, R. and Whittaker, R.J. (2004), "Future climate change of the subtropical North Atlantic: implications for the cloud forests of Tenerife", Clim. Change., 65(1-2), 103-123. https://doi.org/10.1023/B:CLIM.0000037488.33377.bf
- Stewart, M.G., Wang, X. and Nguyen, M.N. (2011), "Climate change impact and risks of concrete infrastructure deterioration", Eng. Struct., 33(4), 1326-1337. https://doi.org/10.1016/j.engstruct.2011.01.010
- Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M., Allen, S.K., Boschung, J. and Midgley, P.M. (2014), "Climate Change 2013: The physical science basis", contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change, Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
- Szulejko, J.E., Kumar, P., Deep, A. and Kim, K.H. (2017), "Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor", Atmos. Pollut. Res., 8(1), 136-140. https://doi.org/10.1016/j.apr.2016.08.002
- Ta, V.L., Bonnet, S., Senga Kiesse, T. and Ventura, A. (2016), "A new meta-model to calculate carbonation front depth within concrete structures", Constr. Build. Mater., 129, 172-181. https://doi.org/10.1016/j.conbuildmat.2016.10.103
- Talukdar, S., Banthia, N., Grace, J.R. and Cohen, S. (2012), "Carbonation in concrete infrastructure in the context of global climate change: Part 2 - Canadian urban simulations", Cement Concrete Compos., 34(8), 931-935. https://doi.org/10.1016/j.cemconcomp.2012.04.012
- The Climate in Japan (2021), Accessed December 08, 2022. Available from https://www.worlddata.info/asia/Japan/climate.php
- The Climate in Zamba (2021), Accessed December 08, 2022. Available from https://www.worlddata.info/africa/Zambia/climate.php
- Uddin, M.T., Islam, M.N., Sutradhar, S.K., Chowdhury, M.H.R., Hasnat, A. and Khatib, J.M. (2013), "Carbonation coefficient of concrete in Dhaka City", Proceedings of the third International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan.
- Van Wijngaarden, W.A. and Vincent, L.A. (2005), "Examination of discontinuities in hourly surface relative humidity in Canada during 1953-2003", J. Geophys. Res. Atmos., 110(22), 1-9. https://doi.org/10.1029/2005JD005925
- Vuille, M., Bradley, R.S., Werner, M. and Keimig, F. (2003), "20th century climate change in the tropical Andes: observations and model results: Climate variability and change in high elevation regions: Past, present & future", Climate Change., 15, 75-99. https://doi.org/10.1007/978-94-015-1252-7_5
- Wang, X.Y. and Luan, Y. (2018), "Evaluation of carbonation service life of slag blended concrete considering climate changes", Comput. Concrete, Int. J., 21(4), 419-429. https://doi.org/10.12989/cac.2018.21.4.419
- Wang, X., Stewart, M.G., Nguyen, M., Wang, X., Nguyen, M, and Stewart, M.G. (2012), "Impact of climate change on corrosion and damage to concrete infrastructure in Australia", Clim. Change, 110, 941-957. https://doi.org/10.1007/s10584-011-0124-7
- Yoon, I.S. and Chang, C.H. (2020), "Time evolution of CO2 diffusivity of carbonated concrete", Appl. Sci., 10(24), 8910. https://doi.org/10.3390/app10248910
- Yoon, I.S., Copuroglu, O. and Park, K.B. (2007), "Effect of global climatic change on carbonation progress of concrete", Atmos. Environ., 41(34), 7274-7285. https://doi.org/10.1016/j.atmosenv.2007.05.028