참고문헌
- Ali-Benyahia, K., Kenai, S., Ghrici, M., Sbartai, Z.M. and Elachachi, S.M. (2023), "Analysis of the accuracy of in-situ concrete characteristic compressive strength assessment in real structures using destructive and non-destructive testing methods", Constr. Build. Mater., 366, 130161. https://doi.org/101016/jconbuildmat2022130161. 101016/jconbuildmat2022130161
- Allain, M., Ple, O., Prime, N., Roux, E. and Vacher, P. (2023), "In situ DIC method to determine stress state in reinforced concrete structures", Measure., 210, 112483. https://doi.org/101016/jmeasurement2023112483. 101016/jmeasurement2023112483
- Bagher Shemirani, A., and Lawaf, M.P. (2024), "Prediction of tensile strength of concrete using the machine learning methods", Asian J. Civil Eng., 25(2), 1207-1223. https://doi.org/10.1007/s42107-023-00837-5.
- Bengio, Y. and Grandvalet, Y. (2004), "No unbiased estimator of the variance of k-fold cross-validation", J. Mach. Learn. Res., 5, 1089-1105.
- Chen, S., Zhang, H., Zykova, K.I., Touchaei, H.G., Yuan, C., Moayedi, H. and Le, B.N. (2023), "Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions", Comput. Concrete, 32(2), 217-232. https://doi.org/10.12989/cac.2023.32.2.217.
- Coelho, S.A. and Araujo, D.L. (2023), "Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars", Comput. Concrete, 31(1), 53-69. https://doi.org/10.12989/cac.2023.31.1.053.
- Dabli, A., Bambole, A. and Bajoria, K. (2020), "Evaluation of in-place stress in concrete by incremental hole drilling", ACI Mater. J., 117, 27-35. https://doi.org/10.14359/51724612.
- Deng, N.C. and Tang, P.F. (2020) (2020), "Research on in situ stress measurements in reinforced concrete beams based on the core-drilling method", Adv. Civil Eng., 2020, 1-11. https://doi.org/101155/2020/8832614. 101155/2020/8832614
- Eidgahee, D.R., Soleymani, A., Hasani, H., Kontoni, D.P.N. and Jahangir, H. (2023), "Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques", Comput. Concrete, 32(1), 1-13. https://doi.org/10.12989/cac.2023.32.1.001.
- Elmo, D. and Mitelman, A. (2021), "Modeling concrete fracturing using a hybrid finite-discrete element method", Comput. Concrete, 27(4), 297-304. https://doi.org/10.12989/cac.2021.27.4.297.
- Erdal, H., Erdal, M., Simsek, O. and Erdal, H.I. (2018), "Prediction of concrete compressive strength using non-destructive test results", Comput. Concrete, 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.407.
- Friedman, J.H. (2002), "Stochastic gradient boosting", Comput. Stat. Data Anal., 38(4), 367-378. https://doi.org/101016/S0167-9473(01)00065-2. 101016/S0167-9473(01)00065-2
- Haavisto, J., Husso, A. and Laaksonen, A. (2021), "Compressive strength of core specimens drilled from concrete test cylinders", Struct. Concrete, 22(S1), E683-E695. https://doi.org/101002/suco202000428. 101002/suco202000428
- Idriss, L.K. and Owais, M. (2024), "Global sensitivity analysis for seismic performance of shear wall with high-strength steel bars and recycled aggregate concrete", Constr. Build. Mater., 411, 134498. https://doi.org/10.1016/j.conbuildmat.2023.134498.
- Jang, D., Bang, J., Yoon, H.N., Seo, J., Jung, J., Jang, J.G. and Yang, B. (2022), "Deep learning-based LSTM model for prediction of long-term piezoresistive sensing performance of cement-based sensors incorporating multi-walled carbon nanotube", Comput. Concrete, 30(5), 301-310. https://doi.org/10.12989/cac.2022.30.5.301.
- Ji, Y., Chen, A., Chen, Y., Han, X., Li, B., Gao, Y., Liu, C. and Xie, J. (2023), "A state-of-the-art review of concrete strength detection/monitoring methods: With special emphasis on PZT transducers", Constr. Build. Mater., 362, 129742. https://doi.org/101016/jconbuildmat2022129742. 101016/jconbuildmat2022129742
- Kumar, A., Arora, H.C., Kapoor, N.R., Kontoni, D.P.N., Kumar, K., Jahangir, H. and Bhushan, B. (2023), "Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system", Comput. Concrete, 32(2), 119-138. https://doi.org/10.12989/cac.2023.32.2.119.
- Kumar, A., Arora, H.C., Kumar, K., Garg, H. and Jahangir, H. (2023), "Development of efficient prediction model of FRP-to-concrete bond strength using curve fitting and ANFIS methods", Arab. J. Sci. Eng., 49(4), 5129-5158. https://doi.org/10.1007/s13369-023-08328-0.
- Li, B., Fang, H., Yang, K., Zhang, X., Du, X., Wang, N. and Guo, X. (2022), "Impact of erosion voids and internal corrosion on concrete pipes under traffic loads", Tunnel. Undergr. Sp. Technol., 130, 104761. https://doi.org/101016/jtust2022104761. 101016/jtust2022104761
- Li, F., Wu, P. and Yan, X. (2015), "Analysis and monitoring on jacking construction of continuous box girder bridge", Comput. Concrete, 16(1), 49-65. https://doi.org/10.12989/cac.2015.16.1.049.
- Liu, Z., Chen, C., Huang, Y., Huang, J. and Deng, D. (2024), "To in-situ construct a layer of ductile and dense skin in protecting the born concrete matrix of reinforced concrete", Constr. Build. Mater., 411, 134544. https://doi.org/10.1016/j.conbuildmat.2023.134544.
- Marra, L., Fabbro, S., Kuffa, M. and Wegener, K. (2023), "Geometric-kinematic model for reinforced concrete core drilling", Int. J. Adv. Manuf. Technol., 125(7-8), 3149-3158. https://doi.org/101007/s00170-022-10787-y. 101007/s00170-022-10787-y
- Mathar, J. (1933), "Determination of initial stresses by measuring the deformations around drilled holes", J. Fluids Eng., 56, 249-254. https://doi.org/101115/14019712. 101115/14019712
- McGinnis, M.J. and Pessiki, S. (2016), "Experimental study of the core-drilling method for evaluating in situ stresses in concrete structures", J. Mater. Civil Eng., 28(2), 04015099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001294.
- Miller, D., Ho, N.M. and Talebian, N. (2022), "Monitoring of in-place strength in concrete structures using maturity method - An overview", Struct., 44, 1081-1104. https://doi.org/101016/jistruc202208077. 101016/jistruc202208077
- Miyamoto, A., Emoto, H. and Asano, H. (2014), "Advanced performance evaluation system for existing concrete bridges", Comput. Concrete, 14(6), 727-743. https://doi.org/10.12989/cac.2014.14.6.727.
- Naseri Nasab, M., Jahangir, H., Hasani, H., Majidi, M.H. and Khorashadizadeh, S. (2023a), "Estimating the punching shear capacities of concrete slabs reinforced by steel and FRP rebars with ANN-Based GUI toolbox", Struct., 50, 1204-1221. https://doi.org/10.1016/j.istruc.2023.02.072.
- Natekin, A. and Knoll, A. (2013), "Gradient boosting machines, a tutorial", Front. Neurorobot., 91(4), 21. https://doi.org/103389/fnbot201300021. 103389/fnbot201300021
- Nguyen-Sy, T., Wakim, J., To, Q.D., Vu, M.N., Nguyen, T.D. and Nguyen, T.T. (2020), "Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method", Constr. Build. Mater., 260, 119757. https://doi.org/101016/jconbuildmat2020119757. 101016/jconbuildmat2020119757
- Parivallal, S., Ravisankar, K., Nagamani, K. and Kesavan, K. (2011), "Core-drilling technique for in-situ stress evaluation in concrete structures", Experiment. Tech., 35(4), 29-34. https://doi.org/101111/j1747-1567201000622x. 101111/j1747-1567201000622x
- Pucinotti, R. (2013), "Assessment of in situ characteristic concrete strength", Constr. Build. Mater., 44, 63-73. https://doi.org/101016/jconbuildmat201302041. 101016/jconbuildmat201302041
- Ruan, X. and Zhang, Y. (2015), "In-situ stress identification of bridge concrete components using core-drilling method", Struct. Infrastr. Eng., 11(2), 210-222. https://doi.org/101080/157324792013862729. 101080/157324792013862729
- Sarfarazi, V., Haeri, H. and Shemirani, A. B. (2018), "Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D", Smart Struct. Syst., 22(6), 675-687. https://doi.org/10.12989/sss.2018.22.6.675.
- Shang, G. and Chen, J. (2023), "Deep learning of sweep signal for damage detection on the surface of concrete", Comput. Concrete, 32(5), 475-486. https://doi.org/10.12989/cac.2023.32.5.475.
- Shemirani, A.B. (2022), "Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete", Comput. Concrete, 29(6), 407-418. https://doi.org/10.12989/cac.2022.29.6.407.
- Trautner, C., McGinnis, M. and Pessiki, S. (2010), "Analytical and numerical development of the incremental core-drilling method of non-destructive determination of in-situ stresses in concrete structures", J. Strain Anal. Eng. Des., 45(8), 647-658. https://doi.org/101177/030932471004500801. 101177/030932471004500801
- Trautner, C., McGinnis, M. and Pessiki, S. (2011), "Application of the incremental core-drilling method to determine in-situ stresses in concrete", Mater. J., 108(3), 290-299. https://doi.org/1014359/51682494. 1014359/51682494
- Turker, H.T. (2003), "Theoretical development of the core-drilling method for nondestructive evaluation of stresses in concrete structures", Ph.D. Dissertation, Lehigh University, Bethlehem, PA, USA.
- Utepov, Y., Khudaibergenov, O., Kabdush, Y. and Kazkeev, A. (2019), "Prototyping an embedded wireless sensor for monitoring reinforced concrete structures", Comput. Concrete, 24(2), 95-102. https://doi.org/10.12989/cac.2019.24.2.095.
- Von Mirbach, D. (2013), "Hole-drilling method for residual stress measurement - consideration of elastic-plastic material properties", Mater. Sci. Forum, 768-769, 174-181. https://doi.org/10.4028/www.scientific.net/MSF.768-769.174.
- Xia, J., Zhang, S., Liao, L., Liu, H. and Sun, Y. (2023), "Working stress measurement of prestressed rebars using the magnetic resonance method", Build., 13(6), 1416. https://doi.org/103390/buildings13061416. 103390/buildings13061416
- Yang, S., Xu, Z. and Wang, J. (2022), "Prediction on concrete splitting strength from compressive strength of drilling-core", Struct. Concrete, 23(2), 1226-1238. https://doi.org/101002/suco202000577. 101002/suco202000577
- Zhang, F.P., Qiu, Z.G. and Jiao, P.F. (2011), "Test analysis of measuring working strains in concrete structures by loophole-drilling strain-gage method", Adv. Mater. Res., 243-249, 5656-5661. https://doi.org/10.4028/www.scientific.net/AMR.243-249.5656.
- Zhang, Y., Xu, D. and Liu, C. (2018), "Behavior and stress check of concrete box girders strengthened by external prestressing", Comput. Concrete, 22(2), 133-142. https://doi.org/10.12989/cac.2018.22.2.133.
- Zhu, J., Wang, C., Yang, Y. and Wang, Y. (2023), "Hygro-thermal-mechanical coupling analysis for early shrinkage of cast in situ concrete slabs of composite beams: Theory and experiment", Constr. Build. Mater., 372, 130774. https://doi.org/10.1016/j.conbuildmat.2023.130774.
- Zhuang, C.X, Zhuang, J.Q. and Jiang, H.R. (2016), "Review of concrete stress testing technologies", J. Highway Transp. Res. Dev., 33(3), 43-51.
- Zuccarello, B., Menda, F. and Scafidi, M. (2016), "Error and uncertainty analysis of non-uniform residual stress evaluation by using the ring-core method", Experiment. Mech., 56(9), 1531-1546. https://doi.org/10.1007/s11340-016-0150-5.