Acknowledgement
The Authors extend their appreciation to the Deanship Scientific Research at King Khalid University for funding this work through large group Research Project under grant number: RGP2/388/45.
References
- Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
- Al-Gahtani, H.J. and Mukhtar, F.M. (2014), "RBF-based meshless method for the free vibration of beams on elastic foundations", Appl. Math. Mech., 249, 198-208. https://doi.org/10.1016/j.amc.2014.09.097.
- Alibar, M.Y., Safaei, B., Asmael, M. and Zeeshan, Q. (2022), "Effect of carbon nanotubes and porosity on vibrational behavior of nanocomposite structures: A review", Arch. Comput. Methods Eng., 29, 2621-2657. https://doi.org/10.1007/s11831-021-09669-5.
- Alimoradzade M. and Akbas S.D. (2022), "Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation", Steel Compos. Struct., 44(4), 543-553. https://doi.org/10.12989/scs.2022.44.4.543.
- AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://doi.org/10.12989/cac.2020.26.3.285.
- Arefi, M. and Najafitabar, F. (2021), "Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method", Thin Wall. Struct., 158, 107200. https://doi.org/10.1016/j.tws.2020.107200.
- Asgari, GH., Payganeh, GH. and Malekzadeh Fard, K. (2019), "Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations", Struct. Eng. Mech., 72(4), 525-540. https://doi.org/10.12989/sem.2019.72.4.525.
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
- Belabed, Z., Selim, M.M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2021.40.2.307.
- Biswas, S. and Datta, P. (2021), "Finite element model for free vibration analyses of FG-CNT reinforced composite beams using refined shear deformation theories", IOP Conf. Ser.: Mater. Scie. Eng., 1206(1), 012019. https://doi.org/10.1088/1757-899x/1206/1/012019.
- Boudaa, S., Khalfallah, S. and Bilotta, E. (2019), "Static interaction analysis between beam and layered soil using a two-parameter elastic foundation", Int. J. Adv. Struct. Eng., 11(1), 21-30. https://doi.org/10.1007/s40091-019-0213-9.
- Chen, D., Rezaei, S., Rosendahl, P.L., Xu, B.X. and Schneider, J. (2022), "Multiscale modelling of functionally graded porous beams: Buckling and vibration analyses", Eng. Struct., 266, 114568. https://doi.org/10.1016/j.engstruct.2022.114568.
- Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2019), "Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory", Thin Wall. Struct., 140, 304-317. https://doi.org/10.1016/j.tws.2019.03.031.
- Damghanian, R., Asemi, K. and Babaei, M. (2020), "A new beam element for static, free and forced vibration responses of microbeams resting on viscoelastic foundation based on modified couple stress and third-order beam theories", Iran. J. Mater. Sci., 46(1), 131-147. https://doi.org/10.1007/s40997-020-00407-z.
- Deng, H., Chen, K., Cheng, W. and Zhao, S. (2017), "Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation", Compos. Struct., 160, 152-168. https://doi.org/10.1016/j.compstruct.2016.10.027.
- Dhatt, G., Lefrancois, E. and Touzot, G. (2012), Finite Element Method, ISTE Ltd., London, UK.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput Concrete, 30(6), 433-43. https://doi.org/10.12989/cac.2022.30.6.433.
- Doeva, O., Masjedi, P.K. and Weaver, P.M. (2021), "Closed form solutions for an anisotropic composite beam on a two-parameter elastic foundation", Eur. J. Mech. A Solids, 88, 104245. https://doi.org/10.1016/j.euromechsol.2021.104245.
- Doeva, O., Masjedi, P.K. and Weaver, P.M. (2022), "Exact analytical solution for static deflection of Timoshenko composite beams on two-parameter elastic foundations", Thin Wall. Struct., 172, 108812. https://doi.org/10.1016/j.tws.2021.108812.
- Duc, N.D. and Minh, P.P. (2021), "Free vibration analysis of cracked FG CNTRC plates using phase field theory", Aerosp. Sci. Technol., 112. http://doi.org/10.1016/j.ast.2021.106654.
- Fallah, A. and Aghdam, M.M. (2023), "Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation", Eng. Comput., 40, 437-454. https://doi.org/10.1007/s00366-023-01799-7.
- Fang, W., Yu, T., Van Lich, L. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Fouaidi, M., Jamal, M., Zaite, A. and Belouaggadia, N. (2021), "Bending analysis of functionally graded graphene oxide powder-reinforced composite beams using a meshfree method", Aerosp. Sci. Technol., 110, 106479. https://doi.org/10.1016/j.ast.2020.106479.
- Ha, N.H., Tan, N.C., Ninh, D.G., Hung, N.C. and Dao, D.V. (2023), "Dynamical and chaotic analyses of single-variable-edge cylindrical panels made of sandwich auxetic honeycomb core layer in thermal environment", Thin Wall. Struct., 183, 110300. https://doi.org/10.1016/j.tws.2022.110300.
- Hao, N., Song, Y., Chen, J., He, C. and Li, Y. (2023), "Compressive performance of a foam-filled fiber-reinforced grid beetle elytron plate", Sci. Chin. Technol. Sci., 66, 830-840. https://doi.org/10.1007/s11431-022-2171-0.
- Hasrati, E., Ansari, R. and Torabi, J. (2017), "Nonlinear forced vibration analysis of FG-CNTRC cylindrical shells under thermal loading using a numerical strategy", Int. J. Appl. Mech., 9(8), 1750108. https://doi.org/10.1142/S1758825117501083.
- Hoang, V.N.V., Ninh, D.G., Truong, D.V., Bao, H.V. and Huy, V.L. (2021), "Behaviors of dynamics and stability standard of graphene nanoplatelet reinforced polymer corrugated plates resting on the nonlinear elastic foundations", Compos. Struct., 260, 113253. https://doi.org/10.1016/j.compstruct.2020.113253.
- Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/scs.2021.40.1.139.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 37(4), 3569-3589. https://doi.org/10.1007/s00366-020-01018-7.
- Karamanli, A. and Vo, T.P. (2021), "Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams", Compos. Struct., 264, 113739. https://doi.org/10.1016/j.compstruct.2021.113739.
- Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
- Khazaei, P., Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Kumar, P. and Srinivas, J. (2017), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: comparative analysis with hybrid laminated composite beam. Multidisc", Model. Mater. Struct., 13, 590-611. https://doi.org/10.1108/MMMS-05-2017-0032.
- Kumar, S. (2022), "Vibration analysis of non-uniform axially functionally graded beam resting on Pasternak foundation", Mater. Today Proc., 62, 619-623. https://doi.org/10.1016/j.matpr.2022.03.622.
- Luat, D.T., Thom, D.V., Thanh, T.T., Phung, M. and Vinh, P.V. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055.
- Marandi, S.M. and Karimipour, I. (2023), "Free vibration analysis of a nanoscale FG-CNTRCs sandwich beam with flexible core: Implementing an extended high order approach", Eng. Struct., 276, 115320. https://doi.org/10.1016/j.engstruct.2022.115320.
- Mellouli, H., Jrad, H., Wali, M. and Dammak, F. (2020), "Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method", Comput. Math. Appl., 79(11), 3160-3178. https://doi.org/10.1016/j.camwa.2020.01.015.
- Mohseni, A. and Shakouri, M. (2019), "Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation", Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., 233, 2478-2489. https://doi.org/10.1177/1464420719866222.
- Nejadi, M.M. and Mohammadimehr, M. (2020a), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. http://doi.org/10.12989/cac.2020.25.3.215.
- Nejadi, M.M. and Mohammadimehr, M. (2020b), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.
- Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. https://doi.org/10.12989/anr.2021.10.6.539.
- Nguyen, N.D., Nguyen, T.N., Nguyen, T.K. and Vo, T.P. (2022), "A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams", Compos. Struct., 282, 115095. https://doi.org/10.1016/j.compstruct.2021.115095.
- Nguyen, N.D., Nguyen, T.N., Nguyen, T.K. and Vo, T.P. (2023), "A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation", Struct., 50, 1934-1950. https://doi.org/10.1016/j.istruc.2023.03.018.
- Ninh, D.G. and Bich, D.H. (2016), "Nonlinear torsional bucklin and postbuckling of eccentrically stiffened ceramic functionally graded material metal layer cylindrical shell surrounded by elastic foundation subjected to thermo-mechanical load", J. Sandw. Struct. Mater., 18(6), 712-738. https://doi.org/10.1177/1099636216644787.
- Ninh, D.G., Ha, N.H., Long, N.T., Tan, N.C., Tien, N.D. and Dao, D.V. (2023b), "Thermal vibrations of complex-generatrix shells made of sandwich CNTRC sheets on both sides and open/closed cellular functionally graded porous core", Thin Wall. Struct., 182, 110161. https://doi.org/10.1016/j.tws.2022.110161.
- Ninh, D.G., Long, N.T., Van Vang, T., Ha, N.H., Nguyen, C.T. and Dao, D.V. (2023a), "A new study for aeroplane wing shapes made of boron nitride nanotubes-reinforced aluminium, Part I: review, dynamical analyses and simulation", Compos. Struct., 303, 116239. https://doi.org/10.1016/j.compstruct.2022.116239.
- Ninh, D.G., Quan, N.M. and Hoang, V.N.V. (2022), "Thermally vibrational analyses of functionally graded graphene nanoplatelets reinforced funnel shells with different complex shapes surrounded by elastic foundation", Mech. Adv. Mater. Struct., 29, 4654-4676. https://doi.org/10.1080/15376494.2021.1934763.
- Nuhu, A.A. and Safaei, B. (2023), "On the advances of computational nonclassical continuum theories of elasticity for bending analyses of small-sized plate-based structures: A review", Arch. Comput. Method. Eng., 30, 2959-3029. https://doi.org/10.1007/s11831-023-09891-3.
- Pham, Q.H., Nguyen, P.C., Tran, V.K. and Nguyen-Thoi, T. (2021), "Finite element analysis for functionally graded porous nano-plates resting on elastic foundation", Steel Compos. Struct., 41, 149-166. https://doi.org/10.12989/scs.2021.41.2.149.
- Priyanka, R., Twinkle, C.M. and Pitchaimani, J. (2021), "Stability and dynamic behavior of porous FGM beam: Influence of graded porosity, graphene platelets, and axially varying loads", Eng. Comput., 38(S5), 4347-4366. https://doi.org/10.1007/s00366-021-01478-5.
- Reza Barati, M. and Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082.
- Rostami, R. and Mohammadimehr, M. (2021), "Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method", Steel Compos. Struct., 41(6), 821-829. https://doi.org/10.12989/scs.2021.41.6.821.
- Shen, H. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004.
- Shen, H.S., He, X.Q. and Yang, D.Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Non-Lin. Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010.
- Soni, S.K., Thomas, B., Swain, A. Roy, T. (2022), "Functionally graded carbon nanotubes reinforced composite structures: An extensive review", Compos. Struct., 299, 116075. https://doi.org/10.1016/j.compstruct.2022.116075.
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19, 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
- Tien, N.D., Hoang, V.N.V., Ninh, D.G., Huy, V.L. and Hung, N.C. (2020), "Nonlinear dynamics and chaos of a nanocomposite plate subjected to electro-thermo-mechanical loads using Flugge-Lur'e-Bryrne theory", J. Vib. Control, 27(9-10), 1184-1197. https://doi.org/10.1177/1077546320938185.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Vinh, P.V. and Son, L.T. (2022), "A new first-order mixed beam element for static bending analysis of functionally graded graphene oxide powder-reinforced composite beams", Struct., 36, 463-472. https://doi.org/10.1016/j.istruc.2021.12.032.
- Wang, M., Xu, Y.G., Qiao, P. and Li, Z.M. (2019), "A two-dimensional elasticity model for bending and free vibration analysis of laminated graphene-reinforced composite beams", Compos. Struct., 211, 364-375. https://doi.org/10.1016/j.compstruct.2018.12.033.
- Wang, Y. and Kiani, Y. (2022), "Effects of initial compression/tension, foundation damping and pasternak medium on the dynamics of shear and normal deformable GPLRC beams under moving load", Mater. Today Commun., 33, 104938. https://doi.org/10.1016/j.mtcomm.2022.104938.
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
- Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Appl. Comput. Mech., 50(2), 375-380. https://doi.org/10.22059/jcamech.2019.291967.448.
- Zhang, D.P., Lei, Y.J., Wang, C.Y. and Shen, Z.B. (2017), "Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation", J. Mech. Sci. Technol., 31(1), 87-98. https://doi.org/10.1007/s12206-016-1007-7.
- Zhang, L.H., Lai, S.K., Wang, C. and Yang, J. (2021), "DSC regularized Dirac-delta method for dynamic analysis of FG graphene platelet-reinforced porous beams on elastic foundation under a moving load", Compos. Struct., 255, 112865. https://doi.org/10.1016/j.compstruct.2020.112865.
- Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2018), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 27(1), 3-11. https://doi.org/10.1080/15376494.2018.1444216.