DOI QR코드

DOI QR Code

Numerical analysis on dynamic response and damage assessment of FRP bars reinforced-UHPC composite beams under impact loading

  • Tao Liu (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Qi M. Zhu (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Rong Ge (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Lin Chen (School of Civil Engineering, Hunan University of Science and Technology) ;
  • Seongwon Hong (Department of Safety Engineering, Korea National University of Transportation)
  • Received : 2024.01.11
  • Accepted : 2024.02.29
  • Published : 2024.10.25

Abstract

This paper utilizes LS-DYNA software to numerically investigate impact response and damage evaluation of fiber-reinforced polymer (FRP) bars-reinforced ultra-high-performance concrete (UHPC) composite beams (FRP-UHPC beams). Three-dimensional finite element (FE) models are established and calibrated by using literature-based static and impact tests, demonstrating high accuracy in simulating FRP-UHPC beams under impact loading. Parametric analyses explore the effects of impact mass, impactor height, FRP bar type and diameter, and clear span length on dynamic response and damage modes. Two failure modes emerge: tensile failure with bottom longitudinal reinforcement fracture and compression failure with local concrete compression near the impact region. Impact mass or height variation under the same impact energy significantly affects the first peak impact force, but minimally influences peak midspan displacement with a difference of no more than 5% and damage patterns. Increasing static flexural load-carrying capacity enhances FRP-UHPC beam impact resistance, reducing displacement deformation by up to 30%. Despite similar static load-carrying capacities, different FRP bars result in varied impact resistance. The paper proposes a damage assessment index based on impact energy, static load-carrying capacity, and clear span length, correlating well with beam end rotation. Their linearly-fitting coefficient was 1.285, 1.512, and 1.709 for the cases with CFRP, GFRP, and BFRP bars, respectively. This index establishes a foundation for an impact-resistant design method, including a simplified formula for peak midspan displacement assessment.

Keywords

Acknowledgement

The research work was supported by the Hunan Provincial Natural Science Foundation of China (Grant No. 2024JJ9066, 2023JJ70006), the National Natural Science Foundation of China (52278500), the Research Foundation of Education Bureau of Hunan Province of China (21B0470, 21A0293), Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2021R1A4A2001964), and Mid-Career Researcher and Young Researcher Programs through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT; Ministry of Science and ICT (2023R1A2C2006400 and 2021R1C1C1010087)).

References

  1. Abdulsahib, W.S., Almuhsin, B.S. and Abduljabbar, M.S. (2023), "Dynamic response of reinforced concrete beams subjected to low velocity impact loads using nonlinear finite element analysis", Period. Eng. Nat. Sci., 11(3), 1-17. http://doi.org/10.21533/pen.v11i3.3554.
  2. ACI 440 (2015), Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars, ACI 440.2R-15, American Concrete Institute, Farmington Hills, MI, USA.
  3. Al-Bodour, W., Murad, Y., Imam, R. and Smadi, Y. (2022), "Shear strength investigation of the carbon fiber reinforced polymer-wrapped concrete beams using gene expression programming and finite element analysis", J. Struct. Integr. Maint., 7(1), 15-24, https://doi.org/10.1080/24705314.2021.1971891
  4. Cao, X., He, D.B., Qian, K., Fu, F., Deng, X.F. and Wang, L. (2023), "Shear behavior of glass FRP bars-reinforced ultra-high-performance concrete I-shaped beams", Struct. Concrete, 24(1), 1503-1520. https://doi.org/10.1002/suco.202100801.
  5. Cao, X., Ren, Y.C., Zhang, L., Jin, L.Z. and Qian, K. (2022), "Flexural behavior of ultra-high-performance concrete beams with various types of rebar", Compos. Struct., 292, 115674. https://doi.org/10.1016/j.compstruct.2022.115674.
  6. Eidgahee, D.R., Soleymani, A., Hasani, H., Kontoni, D.P.N. and Jahangir, H. (2023), "Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques", Comput. Concrete, 32(1), 1-13. https://doi.org/10.12989/cac.2023.32.1.001.
  7. El-Kholy, A.M., Osman, A.O. and EL-Sayed, A.A. (2022), "Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns", Comput. Concrete, 29(4), 219-235. https://doi.org/10.12989/cac.2022.29.4.219.
  8. Emara, M., Elkomy, N. and Kader, H.A. (2021), "Numerical assessment of reinforced concrete beams strengthened with CFRP sheets under impact loading", Ed Integrita Strutt, 15(58), 48-64. https://doi.org/10.3221/IGF-ESIS.58.04.
  9. Emara, M., Hamoda, A. and Hu, J.W. (2023), "Numerical assessment of rectangular one- and two-way RC slabs strengthened with CFRP under impact loads", Comput. Concrete, 31(3), 173-184. https://doi.org/10.12989/cac.2023.31.3.173.
  10. Faridi, M.A., Roy, K. and Singhal, V. (2023), "Perturbation approach for damage localization in beam-type structures: analytical, experimental and numerical exposition", J. Struct. Integr. Maint., 8(2), 111-120. https://doi.org/10.1080/24705314.2023.2168171.
  11. Ferrier, E., Michel, L., Zuber, B. and Chanvillard, G. (2015), "Mechanical behaviour of ultra-high-performance short-fibre-reinforced concrete beams with internal fibre reinforced polymer bars", Compos. Part B Eng., 68, 246-258. https://doi.org/10.1016/j.compositesb.2014.08.001.
  12. Ghasemi, S., Mirmiran, A., Xiao, Y.L. and Mackie, K. (2016), "Novel UHPC-CFRP waffle deck panel system for accelerated bridge construction", J. Compos. Constr., 20(1), 04015042. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000607.
  13. Goldston, M., Remennikov, A. and Sheikh, M.N. (2016), "Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading", Eng. Struct., 113, 220-232. https://doi.org/10.1016/j.engstruct.2016.01.044.
  14. Haber, Z.B., De-la-Varga, I. and Graybeal, B.A. (2018), "Properties and behavior of UHPC-class materials", Federal Highway Administration (FHWA) Office of Infrastructure Research and Development, Washington, D.C., USA.
  15. Hoang, A.L. and Fehling, E. (2017), "Numerical analysis of circular steel tube confined UHPC stub columns", Comput. Concrete, 19(3), 263-273. https://doi.org/10.12989/cac.2017.19.3.263.
  16. Huang, Z.J., Chen, W.S., Hao, H., Chen, Z.Y., Pham, T.M., Tran, T.T. and Elchalakani, M. (2021a), "Shear behaviour of ambient cured geopolymer concrete beams reinforced with BFRP bars under static and impact loads", Eng. Struct., 231, 111730. https://doi.org/10.1016/j.engstruct.2020.111730.
  17. Huang, Z.J., Chen, W.S., Hao, H., Chen, Z.Y., Pham, T.M., Tran, T.T. and Elchalakani, M. (2021b), "Flexural behaviour of ambient cured geopolymer concrete beams reinforced with BFRP bars under static and impact loads", Compos. Struct., 261, 113282. https://doi.org/10.1016/j.compstruct.2020.113282.
  18. Huang, Z.J., Chen, W.S., Tran, T.T., Pham, T.M., Hao, H., Chen, Z.Y. and Elchalakani, M. (2021c), "Experimental and numerical study on concrete beams reinforced with basalt FRP bars under static and impact loads", Compos. Struct., 263, 113648. https://doi.org/10.1016/j.compstruct.2021.113648.
  19. Jia, P.C., Wu, H., Fang, Q., Peng, Q. and Ma, L.L. (2023), "TDOF model for UHPC members under lateral low-velocity impact", Int. J. Impact Eng., 174, 104520. https://doi.org/10.1016/j.ijimpeng.2023.104520.
  20. Jia, P.C., Wu, H., Wang, R. and Fang, Q. (2021), "Dynamic responses of reinforced ultra-high performance concrete members under low-velocity lateral impact", Int. J. Impact Eng., 150, 103818. https://doi.org/10.1016/j.ijimpeng.2021.103818.
  21. Jiang, L. (2022), "Study on impact resistance of BFRP bars-ultra high-performance concrete beams", M.Sc. Thesis, Guilin University of Technology, Guilin, China.
  22. Jin, L., Zheng, M., Zhang, R.B., Zhao, X.Y., Xia, M.X. and Du, X.L. (2024), "Impact response analysis and prediction of FRP-RC beams with varying flexural stiffness: Numerical simulation and modified two-DOF calculation", Eng. Struct., 301, 117341. https://doi.org/10.1016/j.engstruct.2023.117341.
  23. Kumar, A., Arora, H.C., Kapoor, N.R., Kontoni, D.P.N., Kumar, K., Jahangir, H. and Bhushan, B. (2023), "Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system", Comput. Concrete, 32(2), 119-138. https://doi.org/10.12989/cac.2023.32.2.119.
  24. Li, J., Zhang, R.B., Jin, L., Lan, D.Q., Zheng, M. and Du, X.L. (2023), "Effect of stirrup ratio on impact response of BFRP-reinforced concrete beams under different energy levels", Int. J. Impact Eng., 173, 104472. https://doi.org/10.1016/j.ijimpeng.2022.104472.
  25. Liang, J.F., Liu, J.G., Fan, L., Ren, R., Li, W. and Yang, W.R. (2021), "Bond behavior of FRP bars in CR concrete", Comput. Concrete, 28(2), 107-114. https://doi.org/10.12989/cac.2021.28.2.107.
  26. Liu, T. and Xiao, Y. (2017), "Impact behavior of CFRP-strip-wrapped RC beams without stirrups", J. Compos. Constr., 21(5), 04017035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000815.
  27. Liu, T., Chen, L., Xu, J.J., Demartino, C. and Kang, T.H.K. (2022), "Vehicle collision with reinforced concrete columns wrapped with fiber-reinforced polymer composites", ACI Struct. J., 119(2), 165-179. https://doi.org/10.14359/51734335.
  28. Liu, T., Kang, T.H.K., Nghiem, A. and Xiao, Y. (2020), "Impact testing of reinforced concrete beams shear-strengthened with fiber-reinforced polymer wraps", ACI Struct. J., 117(3), 297-310. https://doi.org/10.14359/51723497.
  29. Liu, T., Xu, X.Q., Chen, L., Kim, S. and Hong, S. (2023), "Numerical analysis on dynamic response of CFRP-wrapped RC columns under lateral impact loading", Mater., 16(6), 2425. https://doi.org/10.3390/ma16062425.
  30. LS-DYNA Version 971 (2010), LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation, San Francisco, CA, USA.
  31. Maio, U.D., Gaetano, D., Greco, F., Lonetti, P. and Pranno, A. (2023), "The damage effect on the dynamic characteristics of FRP-strengthened reinforced concrete structures", Compos. Struct., 309, 116731. https://doi.org/10.1016/j.compstruct.2023.116731.
  32. Nasab, M.N., Jahangir, H., Hasani, H., Majidi, M.H. and Khorashadizadeh, S. (2023), "Estimating the punching shear capacities of concrete slabs reinforced by steel and FRP rebars with ANN-Based GUI toolbox", Struct., 50, 1204-1221. https://doi.org/10.1016/j.istruc.2023.02.072.
  33. Naser, M.Z., Hawileh, R.A. and Abdalla, J. (2021), "Modeling strategies of finite element simulation of reinforced concrete beams strengthened with FRP: A reviews", J. Compos. Sci., 5(1), 19. https://doi.org/10.3390/jcs5010019.
  34. Obaidat, Y.Y., Barham, W.S. and Hayajneh, S.Z. (2023),"Finite element modeling of bond behavior between heat-damged concrete and carbon fiber-reinforced polymer sheets", J. Struct. Integr. Maint., 8(2), 121-132, https://doi.org/10.1080/24705314.2023.2168398.
  35. Pham, T.M., Hao, Y.F. and Hao, H. (2018), "Sensitivity of impact behavior of RC beams to contact stiffness", Int. J. Impact Eng., 112, 155-164. https://doi.org/10.1016/j.ijimpeng.2017.09.015.
  36. Prabhakaran, P. and Joseph, G. (2022), "Flexural performace of CFRP strengthened beams-comparison with analytical model," J. Struct. Integr. Maint., 7(4), 226-237. https://doi.org/10.1080/24705314.2022.2088056.
  37. Qian, K., Xue, T.Q., Deng, X.F. and Ma, J.X. (2023), "Experimental investigation on seismic behavior of Ultra-high performance concrete columns reinforced with GFRP bars", Struct., 53, 568-580. https://doi.org/10.1016/j.istruc.2023.04.065.
  38. Rahdar, H.A. and Ghalehnovi, M. (2016), "Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar", Comput. Concrete, 18(1), 139-154. https://doi.org/10.12989/cac.2016.18.1.139.
  39. Saleh, Z., Sheikh, M.N., Remennikov, A. and Basu, A. (2020), "Damage assessment of GFRP bar reinforced ultra-high-strength concrete beams under overloading impact conditions", Eng. Struct., 213, 110581. https://doi.org/10.1016/j.engstruct.2020.110581.
  40. Su, Q., Wu, H. and Fang, Q. (2022), "Calibration of KCC model for UHPC under impact and blast loadings", Cement Concrete Compos., 127, 104401. https://doi.org/10.1016/j.cemconcomp.2021.104401.
  41. Symonds, P.S. (1967), "Survey of methods of analysis for plastic deformation of structures under dynamic loading", Report No. BU/NSRDC/1-67; Brown University, School of Engineering, Providence, RI, USA.
  42. Tan, H.M., Hou, Z.J., Li, Y.D. and Xu, X.Q. (2022), "A flexural ductility model for UHPC beams reinforced with FRP bars", Struct., 45, 773-786. https://doi.org/10.1016/j.istruc.2022.09.052.
  43. Tran, D.V.P., Sancharoen, P., Klomjit, P., Tangtermsirikul, S. and Nguyen, T.H.Y. (2023), "Prediction equations for corrosion rate of reinforcing steel in cement-fly ash concrete", J. Struct. Integr. Maint., 8(2), 91-99. https://doi.org/10.1080/24705314.2023.2168398
  44. Tran, T.T., Pham, T.M., Huang, Z.J., Chen, W.S., Hao, H. and Elchalakani, M. (2021), "Impact response of fibre reinforced geopolymer concrete beams with BFRP bars and stirrups", Eng. Struct., 231, 111785. https://doi.org/10.1080/24705314.2023.2165749.
  45. Wei, J., Li, J. and Wu, C.Q. (2019), "An experimental and numerical study of reinforced conventional concrete and ultra-high performance concrete columns under lateral impact loads", Eng. Struct., 201, 109822. https://doi.org/10.1016/j.engstruct.2019.109822.
  46. Wei, J., Li, J. and Wu, C.Q. (2023), "Study on hybrid fibre reinforced UHPC beams under single and repeated lateral impact loading", Constr. Build. Mater., 368, 130403. https://doi.org/10.1016/j.conbuildmat.2023.130403.
  47. Wei, J., Li, J., Wu, C.Q., Liu, Z.X. and Li, J. (2021), "Hybrid fibre reinforced ultra-high performance concrete beams under static and impact loads", Eng. Struct., 245, 112921. https://doi.org/10.1016/j.engstruct.2021.112921.
  48. Xiang, D., Hou, Z.J. and Liu, Y.Q. (2023), "Flexural behavior and crack width prediction of UHPC slabs reinforced with FRP bars", J. Build. Eng., 77, 107548. https://doi.org/10.1016/j.jobe.2023.107548.
  49. Xu, S.C., Wu, P.T. and Wu, C.Q. (2020), "Calibration of KCC concrete model for UHPC against low-velocity impact", Int. J. Impact Eng., 144, 103648. https://doi.org/10.1016/j.ijimpeng.2020.103648.
  50. Xu, S.C., Wu, P.T., Liu, Z.X. and Wu, C.Q. (2021), "Calibration of CSCM model for numerical modeling of UHPCFTWST columns against monotonic lateral loading", Eng. Struct., 240, 112396. https://doi.org/10.1016/j.engstruct.2021.112396.
  51. Xu, X.Q. and Hou, Z.J. (2020), "Experimental study on one-way bfrp bar-reinforced UHPC slabs under concentrated load", Mater., 13(14), 3077. https://doi.org/10.3390/ma13143077.
  52. Yang, I.H., Joh, C.B. and Kim, B.S., (2010), "Structural behavior of ultra high performance concrete beams subjected to bending", Eng. Struct., 32(11), 3478-3487. https://doi.org/10.1016/j.engstruct.2010.07.017.
  53. Yao, Y.M., Silva, F.A., Butler, M., Mechtcherine, V. and Mobasher, B. (2021), "Tensile and flexural behavior of ultra-high performance concrete (UHPC) under impact loading", Int. J. Impact Eng., 153, 103866. https://doi.org/10.1016/j.ijimpeng.2021.103866.
  54. Yoo, D.Y. and Banthia, N. (2017), "Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast", Constr. Build. Mater., 149, 416-431. https://doi.org/10.1016/j.conbuildmat.2017.05.136.
  55. Yoo, D.Y., Banthia, N. and Yoon, Y.S. (2016a), "Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars", Eng. Struct., 111, 246-262. https://doi.org/10.1016/j.engstruct.2015.12.003.
  56. Yoo, D.Y., Banthia, N. and Yoon, Y.S. (2016b), "Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars", Compos. Part B Eng., 99, 381-397. https://doi.org/10.1016/j.compositesb.2016.06.013.
  57. Zhao, D.B., Huang, Y.T., Chen, X.S., Han, K.H., Chen, C., Zhao, X.F. and Chen, W.T. (2023), "Numerical investigations on dynamic responses of subway segmental tunnel lining structures under internal blasts", Tunn. Undergr. Sp. Technol., 135, 105058. https://doi.org/10.1016/j.tust.2023.105058