References
- Abohela, I., Hamza, N. and Dudek, S. (2013), "Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines", Renew. Energy, 50, 1106-1118. https://doi.org/https://doi.org/10.1016/j.renene.2012.08.068.
- Adamek, A.K., Vasan, N., Elshaer, A., English, E., Bitsuamlak, G., Adamek, K., Vasan, N., Elshaer, A. and English, E. (2017), "Pedestrian level wind assessment through city development : A study of the financial district in Toronto", Sustain. Cities Soc., https://doi.org/10.1016/j.scs.2017.06.004.
- Aguinaga, S., Virel, M.D.D.E. and Guilhot, J. (2019), Design of the Citadel of Bonifacio Urban Area Through Experimental.
- AIJ, A.I. of J. (2016), AIJ Benchmarks for Validation of CFD Simulations Applied to Pedestrian Wind Environment around Buildings. Architectural Institute of Japan.
- Aldereguia Sanchez, C., Tubino, F., Bagnara, A. and Piccardo, G. (2023), "Experimental simulation of thunderstorm profiles in an atmospheric boundary layer wind tunnel", Appl. Sci. (Switzerland), 13(14). https://doi.org/10.3390/app13148064.
- Alexandri, E. and Jones, P. (2008), "Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates", Build. Environ., 43(4), 480-493. https://doi.org/10.1016/j.buildenv.2006.10.055.
- Architects, M. (2014), Oslo Medieval Park Exhibition. https://architizer.com/projects/oslo-medieval-park-exhibition/
- Architecture, F. (2014), Trylletromler. https://www.archdaily.com/447324/trylletromler-fabricarchitecture#
- Arkitekter, E.S. and Laboratory, C. (2003), Potemkin, Kuramata, Tokamachi, Japan. https://architizer.com/projects/potemkin/
- Badamchizadeh, P., Saadatjoo, P., Ahmadlouydarab, M. and Kazemian, M. (2023), "Greenery as a mitigation strategy for pedestrian level wind condition in urban areas; case study: Iman street in Tabriz TT", Mdrsjrns, 12(4), 96-115. http://bsnt.modares.ac.ir/article-2-64738-en.html.
- Ball-Nogues (2014), Not Whole Fence. https://architizer.com/projects/not-whole-fence/
- Blocken, B. and Stathopoulos, T. (2013), "CFD simulation of pedestrian-level wind conditions around buildings: Past achievements and prospects", J. Wind Eng. Ind. Aerod., 121, 138-145. https://doi.org/10.1016/j.jweia.2013.08.008.
- Blocken, B., Janssen, W.D. and van Hooff, T. (2012), "CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus", Environ. Modelling Softw., 30, 15-34. https://doi.org/10.1016/j.envsoft.2011.11.009.
- Blocken, B., Roels, S. and Carmeliet, J. (2004), "Modification of pedestrian wind comfort in the Silvertop Tower passages by an automatic control system", J. Wind Eng. Ind. Aerod., 92(10), 849-873. https://doi.org/10.1016/j.jweia.2004.04.004.
- Blocken, B., Stathopoulos, T. and van Beeck, J.P.A.J. (2016), "Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment", Build. Environ., 100, 50-81. https://doi.org/10.1016/j.buildenv.2016.02.004.
- Climate and Average Weather Year Round in Tabriz Iran (2022), https://weatherspark.com/y/104056/Average-Weather-in-TabrizIran-Year-Round
- Du, Y., Mak, C. M., Liu, J., Xia, Q., Niu, J. and Kwok, K.C.S. (2017), "Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions", Build. Environ., 117, 84-99. https://doi.org/10.1016/j.buildenv.2017.03.001,
- Francis, R.A. and Lorimer, J. (2011), "Urban reconciliation ecology: The potential of living roofs and walls", J. Environ. Manage., 92(6), 1429-1437. https://doi.org/10.1016/j.jenvman.2011.01.012.
- Gabel, J., Carver, M. and Gerometta, M. (2016), "The skyscraper surge continues in 2015, The "Year of 100 Supertalls", Ctbuh, 1, 38-45.
- Ghorbani, R., Pourmohammadi, M. and Mahmoudzadeh, H. (2014), "Ecological approch in landuse chang modeling of Tabriz metropolitan using multi temporal satellite images, multi criteris analysis and Cellular Automata Markov Chain (1984-2038)", Sci. J. Manage. Syst, 2(8), 13-30.
- Greencity (2020), Green City Solutions | Home. https://greencitysolutions.de/en/
- GROUP, C. (2024), WIND ATTENUATION SCREEN, PEARSON INTERNATIONAL AIRPORT. https://cmvarch.com/wind-attenuation-screen-toronto-pearson-airport/
- Hadavi, M. and Pasdarshahri, H. (2020), "Quantifying impacts of wind speed and urban neighborhood layout on the infiltration rate of residential buildings", Sustain. Cities Soc., 53, 101887. https://doi.org/10.1016/j.scs.2019.101887.
- Herath, H.M.P.I.K., Halwatura, R.U. and Jayasinghe, G.Y. (2018), "Modeling a tropical urban context with green walls and green roofs as an urban heat island adaptation strategy", Procedia Eng., 212, 691-698. https://doi.org/10.1016/j.proeng.2018.01.089.
- Interval Architects. (2024), Rollercoaster. https://architizer.com/projects/rollercoaster/
- ISYUMOV, N. and DAVENPORT, A.G. (1975), THE GROUND LEVEL WIND ENVIRONMENT IN BUILT-UP AREAS. (SEPTEMBER 8-12, 1975).
- Jafari, A. (2005), Iranian Geology (Geographical Encyclopedia of Iran), Institute of Geography and Cartography of Geology.
- Janssen, W.D., Blocken, B. and van Hooff, T. (2013), "Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study", Build. Environ., 59, 547-562. https://doi.org/10.1016/j.buildenv.2012.10.012.
- Javanroodi, K., Mahdavinejad, M. and Nik, V.M. (2018), "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate", Appl. Energy, 231, 714-746. https://doi.org/10.1016/j.apenergy.2018.09.116.
- Kang, G. and Kim, J.-J. (2015), "Effects of trees on flow and scalar dispersion in an urban street canyon", Atmosphere, 25, 685-692. https://doi.org/10.14191/Atmos.2015.25.4.685.
- Kang, G., Kim, J. and Choi, W. (2020), "Computational fluid dynamics simulation of tree effects on pedestrian wind comfort in an urban area", Sustain. Cities Soc., 56(November 2019), 102086. https://doi.org/10.1016/j.scs.2020.102086.
- Kasmaei, M. (2004), Climate and Architecture. khak.
- Lawson, T.V. (1978), "The widn content of the built environment", J. Wind Eng. Ind. Aerod., 3(2-3), 93-105. https://doi.org/10.1016/0167-6105(78)90002-8.
- Li, J., Delmas, A., Donn, M. and Willis, R. (2018), "Validation and comparison of different CFD simulation software predictions of urban wind environment based on AIJ wind tunnel benchmarks", Simulation Series, 50(7), 206-212. https://doi.org/10.22360/simaud.2018.simaud.027.
- Lim, Y.S., Wang, P.C., Yeo, J.J. and Yu, S.C.M. (2021), "Experimental and numerical studies for flow over a sierpinski tetrahedron for potential windbreak application", J. Wind Eng. Ind. Aerod, 216. https://doi.org/10.1016/j.jweia.2021.104712.
- Liu, J., Niu, J. and Xia, Q. (2016), "Combining measured thermal parameters and simulated wind velocity to predict outdoor thermal comfort", Build. Environ., 105, 185-197. https://doi.org/10.1016/j.buildenv.2016.05.038.
- London, C. (2017), Wind Effects and Tall Buildings Guidelines and best practice for assessing wind effects and tall buildings in the City of London. In Planning Advice Note.
- Mahgoub, A.O. and Ghani, S. (2021), "Numerical and experimental investigation of utilizing the porous media model for windbreaks CFD simulation", Sustain. Cities Soc., 65, 102648. https://doi.org/10.1016/j.scs.2020.102648.
- Melbourne, W.H. (1978), "Criteria for environmental wind conditions", J. Wind Eng. Ind. Aerod., 3(2-3), 241-249. https://doi.org/10.1016/0167-6105(78)90013-2.
- Miao, Y. and Lau, S.S.Y. (2023), "Effect of linear building blocks on the wind environment of streets between high-rise buildings: A case of Hong Kong", Int. Rev. Spatial Plan. Sustain. Develop., 11, 63-77. https://doi.org/10.14246/irspsd.11.363.
- Mishra, P. and Aharwal, K.R. (2018), "A review on selection of turbulence model for CFD analysis of air flow within a cold storage", IOP Conference Series: Materials Science and Engineering, 402(1). https://doi.org/10.1088/1757-899X/402/1/012145.
- Mochida, A. and Lun, I.Y.F. (2008), "Prediction of wind environment and thermal comfort at pedestrian level in urban area", J. Wind Eng. Ind. Aerod., 96(10-11), 1498-1527. https://doi.org/10.1016/j.jweia.2008.02.033.
- Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T. and Ooka, R. (2002), "Comparison of various k-ε models and DSM applied to flow around a high-rise building - Report on AIJ cooperative project for CFD prediction of wind environment", Wind Struct., 5(2-4), 227-244. https://doi.org/10.12989/was.2002.5.2_3_4.227.
- Montazeri, H. and Blocken, B. (2013), "CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis", Build. Environ., 60, 137-149. https://doi.org/10.1016/j.buildenv.2012.11.012.
- NajafKhosravi, S., Saadatjoo, P., Mahdavinejad, M. and Amindeldar, S. (2016), "The effect of roof details on natural ventilation efficiency in isolated single buildings", PLEA 2016 - Cities, Buildings, People: Towards Regenerative Environments.
- Naqsh Mohit Consulting Engineers (2016), Tabriz City Development and Construction Plan.
- Nazarian, N., Dumas, N., Kleissl, J. and Norford, L. (2019), "Effectiveness of cool walls on cooling load and urban temperature in a tropical climate", Energy Build., 187, 144-162. https://doi.org/10.1016/j.enbuild.2019.01.022.
- Oke, T.R. (2004), "Initial guidance to obtain representative meteorological observations at urban sites", World Meteorol. Organ., 81, 51.
- Partners, I. (2009), LentSpace. https://architizer.com/projects/lentspace/
- R.M. Aynsley, W.M. and B.J.V. (1977), Architectural Aerodynamics. Applied Science Publishers Ltd.
- Ricci, A., Guasco, M., Caboni, F., Orlanno, M., Giachetta, A. and Repetto, M.P. (2022), "Impact of surrounding environments and vegetation on wind comfort assessment of a new tower with vertical green park", Build. Environ., 207, 104809. https://doi.org/10.1016/j.buildenv.2021.108409.
- Saadatjoo, P, Mahdavinejad, M., Najaf Khosravi, S. and Kaveh, N. (2013), "Effect of courtyard proportion on natural ventilation efficiency", Int. J. Adv. Mech. Civil Eng., 3(5), 92-97.
- Saadatjoo, P. and Saligheh, E. (2021), "The role of buildings distribution pattern on outdoor airflow and received daylight in residential complexes; Case study: Residential complexes in Tehran", Naqshejahan-Basic Studies New Technol. Architect. Plan., 11(3), 67-92.
- Saadatjoo, P., Badamchizadeh, P. and Mahdavinejad, M. (2023), "Towards the new generation of courtyard buildings as a healthy living concept for post-pandemic era", Sustain. Cities Soc., 97. https://doi.org/10.1016/j.scs.2023.104726.
- Saadatjoo, P., Mahdavinejad, M. and Zhang, G. (2018), "A study on terraced apartments and their natural ventilation performance in hot and humid regions", Build. Simul., 11(2), 359-372. https://doi.org/10.1007/s12273-017-0407-7.
- Saadatjoo, P., Mahdavinejad, M., Zhang, G. and Vali, K. (2021), "Influence of permeability ratio on wind-driven ventilation and cooling load of mid-rise buildings", Sustain. Cities Soc., 70, 102894. https://doi.org/https://doi.org/10.1016/j.scs.2021.102894.
- Shirasawa, T., Tominaga, Y., Yoshie, R., Mochida, A., Yoshino, H. and Kataoka, H. (2003), "DEVELOPMENT OF CFD METHOD FOR PREDICTING WIND ENVIRONMENT AROUND A HIGH-RISE BUILDING : Part2 : The cross comparison of CFD results using various k-ε models for the flowfield around a building model with 4:4:1 shape(Environmental Engineering)", AIJ J. Technol. Des., 9(18), 169-174. https://doi.org/10.3130/aijt.9.169_2.
- Soligo, M.J., Irwin, P.A., Williams, C.J. and Schuyler, G.D. (1998), "A comprehensive assessment of pedestrian comfort including thermal effects", J. Wind Eng. Ind. Aerod., 77-78, 753-766. https://doi.org/10.1016/S0167-6105(98)00189-5.
- Spearman Rank Correlation Coefficient BT - The Concise Encyclopedia of Statistics (2008). Springer New York. https://doi.org/10.1007/978-0-387-32833-1_379
- Stathopoulos, T. (2006), "Pedestrian level winds and outdoor human comfort", J. Wind Eng. Ind. Aerod., 94(11), 769-780. https://doi.org/10.1016/j.jweia.2006.06.011/
- Tamura, Y., Xu, X. and Yang, Q. (2019), "Characteristics of pedestrian-level Mean wind speed around square buildings: Effects of height, width, size and approaching flow profile", J. Wind Eng. Ind. Aerod., 192, 74-87. https://doi.org/10.1016/j.jweia.2019.06.017.
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
- Tsichritzis, L. and Nikolopoulou, M. (2019), "The effect of building height and facade area ratio on pedestrian wind comfort of London", J. Wind Eng. Ind. Aerod., 191, 63-75. https://doi.org/10.1016/j.jweia.2019.05.021.
- Urban Highways and Streets Design Guide, section 10:Pedestrain Ways, 95 (2020).
- van Druenen, T., van Hooff, T., Montazeri, H. and Blocken, B. (2019), "CFD evaluation of building geometry modifications to reduce pedestrian-level wind speed", Build. Environ., 163, 106293. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106293.
- Wang, B., Cot, L.D., Adolphe, L., Geoffroy, S. and Morchain, J. (2015), "Estimation of wind energy over roof of two perpendicular buildings", Energy Build., 88, 57-67. https://doi.org/https://doi.org/10.1016/j.enbuild.2014.11.072.
- Willemsen, E. and Wisse, J.A. (2007), "Design for wind comfort in The Netherlands: Procedures, criteria and open research issues", J. Wind Eng. Ind. Aerod., 95(9), 1541-1550. https://doi.org/https://doi.org/10.1016/j.jweia.2007.02.006.
- Williams, C.J., Hunter, M.A. and Waechter, W.F. (1990), "Criteria for assessing the pedestrian wind environment", J. Wind Eng. Ind. Aerod., 36(PART 2), 811-815. https://doi.org/10.1016/0167-6105(90)90078-Q.
- Williams, Colin J., Soligo, M.J. and Cote, J. (1992), "A discussion of the components for a comprehensive pedestrian level comfort criterion", J. Wind Eng. Ind. Aerod., 44(1-3), 2389-2390. https://doi.org/10.1016/0167-6105(92)90029-A.
- Woelke, M. (2007), "Eddy viscosity turbulence models employed by computational fluid dynamic", Prace Instytutu Lotnictwa, Nr 4(191), 92-113.
- Wong, N.H., Kwang Tan, A.Y., Chen, Y., Sekar, K., Tan, P.Y., Chan, D., Chiang, K. and Wong, N.C. (2010), "Thermal evaluation of vertical greenery systems for building walls", Build. Environ., 45(3), 663-672. https://doi.org/10.1016/j.buildenv.2009.08.005.
- Wu, H.G.J. (2017), Georgian Court Redevelopment.
- Ye, M., Chen, H.C. and Koop, A. (2023), "Verification and validation of CFD simulations of the NTNU BT1 wind turbine", J. Wind Eng. Ind. Aerod., 234. https://doi.org/10.1016/j.jweia.2023.105336.
- Zhang, X., Gao, Y., Tao, Q., Min, Y. and Fan, J. (2023), "Improving the pedestrian-level wind comfort by lift-up factors of panel residence complex: Field-measurement and CFD simulation", Build. Environ., 229. https://doi.org/10.1016/j.buildenv.2022.109947.
- Zhang, X., Tse, K.T., Weerasuriya, A.U., Li, S.W., Kwok, K.C.S., Mak, C.M., Niu, J. and Lin, Z. (2017), "Evaluation of pedestrian wind comfort near 'lift-up' buildings with different aspect ratios and central core modifications", Build. Environ., 124, 245-257. https://doi.org/10.1016/j.buildenv.2017.08.012.
- Zheng, S., Guldmann, J.M., Liu, Z., Zhao, L., Wang, J., Pan, X. and Zhao, D. (2020), "Predicting the influence of subtropical trees on urban wind through wind tunnel tests and numerical simulations", Sustain. Cities Soc., 57. https://doi.org/10.1016/j.scs.2020.102116.