DOI QR코드

DOI QR Code

Evaluating the impact of urban multifunctional walls on pedestrian wind comfort on street sidewalks (Case study: Tabriz city)

  • Parinaz Badamchizadeh (Department of Geography and Urban Planning, Faculty of Planning and Environmental Sciences, University of Tabriz) ;
  • Paria Saadatjoo (Department of Architecture, Faculty of Civil Engineering, University of Tabriz) ;
  • Majid Ahmadlouydarab (Department of Chemical & Petroleum Engineering, University of Tabriz) ;
  • Guoqiang Zhang (Department of Engineering, Aarhus University)
  • Received : 2023.12.16
  • Accepted : 2024.05.22
  • Published : 2024.09.25

Abstract

Wind comfort in cold climates is one of the most essential factors for urban planners. This issue is particularly important for sidewalks that are in line with the prevailing wind flow and surrounded by high-rise buildings. Imam Street near the University Square in Tabriz is one of the passages that struggle with uncomfortable wind speeds. The aim of this study is to investigate the role of sidewalk walls on pedestrian wind comfort. These multifunctional walls not only serve as street furniture, but also reduce wind speed at pedestrian level. In this work, all simulations are performed using the RWIND tool and validated by wind tunnel experiments at the Architectural Institute of Japan. The main objective of this study is to evaluate the effects of the angle, height and spacing of the walls on wind attenuation at pedestrian level. The results show the effect of multifunctional walls on pedestrian-level wind mitigation. By rotating the windbreak walls from 0 to 60 degrees along the street, the average wind speed decreases by 30% to 46% compared to a situation without this type of wall. Increasing the wall height from 1.5 to 2 meters reduces the urban wind speed by 39-46%. However, increasing the distance between the sidewalk walls from 3.5-9.5 meters reduces the speed in the models from 46% to 32.7%. Finally, it has been demonstrated that sidewalk walls with a height of 2 meters, a rotation angle of 60° and a distance of 3.5 meters are the optimal choice for wind attenuation at pedestrian level.

Keywords

References

  1. Abohela, I., Hamza, N. and Dudek, S. (2013), "Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines", Renew. Energy, 50, 1106-1118. https://doi.org/https://doi.org/10.1016/j.renene.2012.08.068.
  2. Adamek, A.K., Vasan, N., Elshaer, A., English, E., Bitsuamlak, G., Adamek, K., Vasan, N., Elshaer, A. and English, E. (2017), "Pedestrian level wind assessment through city development : A study of the financial district in Toronto", Sustain. Cities Soc., https://doi.org/10.1016/j.scs.2017.06.004.
  3. Aguinaga, S., Virel, M.D.D.E. and Guilhot, J. (2019), Design of the Citadel of Bonifacio Urban Area Through Experimental.
  4. AIJ, A.I. of J. (2016), AIJ Benchmarks for Validation of CFD Simulations Applied to Pedestrian Wind Environment around Buildings. Architectural Institute of Japan.
  5. Aldereguia Sanchez, C., Tubino, F., Bagnara, A. and Piccardo, G. (2023), "Experimental simulation of thunderstorm profiles in an atmospheric boundary layer wind tunnel", Appl. Sci. (Switzerland), 13(14). https://doi.org/10.3390/app13148064.
  6. Alexandri, E. and Jones, P. (2008), "Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates", Build. Environ., 43(4), 480-493. https://doi.org/10.1016/j.buildenv.2006.10.055.
  7. Architects, M. (2014), Oslo Medieval Park Exhibition. https://architizer.com/projects/oslo-medieval-park-exhibition/
  8. Architecture, F. (2014), Trylletromler. https://www.archdaily.com/447324/trylletromler-fabricarchitecture#
  9. Arkitekter, E.S. and Laboratory, C. (2003), Potemkin, Kuramata, Tokamachi, Japan. https://architizer.com/projects/potemkin/
  10. Badamchizadeh, P., Saadatjoo, P., Ahmadlouydarab, M. and Kazemian, M. (2023), "Greenery as a mitigation strategy for pedestrian level wind condition in urban areas; case study: Iman street in Tabriz TT", Mdrsjrns, 12(4), 96-115. http://bsnt.modares.ac.ir/article-2-64738-en.html.
  11. Ball-Nogues (2014), Not Whole Fence. https://architizer.com/projects/not-whole-fence/
  12. Blocken, B. and Stathopoulos, T. (2013), "CFD simulation of pedestrian-level wind conditions around buildings: Past achievements and prospects", J. Wind Eng. Ind. Aerod., 121, 138-145. https://doi.org/10.1016/j.jweia.2013.08.008.
  13. Blocken, B., Janssen, W.D. and van Hooff, T. (2012), "CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus", Environ. Modelling Softw., 30, 15-34. https://doi.org/10.1016/j.envsoft.2011.11.009.
  14. Blocken, B., Roels, S. and Carmeliet, J. (2004), "Modification of pedestrian wind comfort in the Silvertop Tower passages by an automatic control system", J. Wind Eng. Ind. Aerod., 92(10), 849-873. https://doi.org/10.1016/j.jweia.2004.04.004.
  15. Blocken, B., Stathopoulos, T. and van Beeck, J.P.A.J. (2016), "Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment", Build. Environ., 100, 50-81. https://doi.org/10.1016/j.buildenv.2016.02.004.
  16. Climate and Average Weather Year Round in Tabriz Iran (2022), https://weatherspark.com/y/104056/Average-Weather-in-TabrizIran-Year-Round
  17. Du, Y., Mak, C. M., Liu, J., Xia, Q., Niu, J. and Kwok, K.C.S. (2017), "Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions", Build. Environ., 117, 84-99. https://doi.org/10.1016/j.buildenv.2017.03.001,
  18. Francis, R.A. and Lorimer, J. (2011), "Urban reconciliation ecology: The potential of living roofs and walls", J. Environ. Manage., 92(6), 1429-1437. https://doi.org/10.1016/j.jenvman.2011.01.012.
  19. Gabel, J., Carver, M. and Gerometta, M. (2016), "The skyscraper surge continues in 2015, The "Year of 100 Supertalls", Ctbuh, 1, 38-45.
  20. Ghorbani, R., Pourmohammadi, M. and Mahmoudzadeh, H. (2014), "Ecological approch in landuse chang modeling of Tabriz metropolitan using multi temporal satellite images, multi criteris analysis and Cellular Automata Markov Chain (1984-2038)", Sci. J. Manage. Syst, 2(8), 13-30.
  21. Greencity (2020), Green City Solutions | Home. https://greencitysolutions.de/en/
  22. GROUP, C. (2024), WIND ATTENUATION SCREEN, PEARSON INTERNATIONAL AIRPORT. https://cmvarch.com/wind-attenuation-screen-toronto-pearson-airport/
  23. Hadavi, M. and Pasdarshahri, H. (2020), "Quantifying impacts of wind speed and urban neighborhood layout on the infiltration rate of residential buildings", Sustain. Cities Soc., 53, 101887. https://doi.org/10.1016/j.scs.2019.101887.
  24. Herath, H.M.P.I.K., Halwatura, R.U. and Jayasinghe, G.Y. (2018), "Modeling a tropical urban context with green walls and green roofs as an urban heat island adaptation strategy", Procedia Eng., 212, 691-698. https://doi.org/10.1016/j.proeng.2018.01.089.
  25. Interval Architects. (2024), Rollercoaster. https://architizer.com/projects/rollercoaster/
  26. ISYUMOV, N. and DAVENPORT, A.G. (1975), THE GROUND LEVEL WIND ENVIRONMENT IN BUILT-UP AREAS. (SEPTEMBER 8-12, 1975).
  27. Jafari, A. (2005), Iranian Geology (Geographical Encyclopedia of Iran), Institute of Geography and Cartography of Geology.
  28. Janssen, W.D., Blocken, B. and van Hooff, T. (2013), "Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study", Build. Environ., 59, 547-562. https://doi.org/10.1016/j.buildenv.2012.10.012.
  29. Javanroodi, K., Mahdavinejad, M. and Nik, V.M. (2018), "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate", Appl. Energy, 231, 714-746. https://doi.org/10.1016/j.apenergy.2018.09.116.
  30. Kang, G. and Kim, J.-J. (2015), "Effects of trees on flow and scalar dispersion in an urban street canyon", Atmosphere, 25, 685-692. https://doi.org/10.14191/Atmos.2015.25.4.685.
  31. Kang, G., Kim, J. and Choi, W. (2020), "Computational fluid dynamics simulation of tree effects on pedestrian wind comfort in an urban area", Sustain. Cities Soc., 56(November 2019), 102086. https://doi.org/10.1016/j.scs.2020.102086.
  32. Kasmaei, M. (2004), Climate and Architecture. khak.
  33. Lawson, T.V. (1978), "The widn content of the built environment", J. Wind Eng. Ind. Aerod., 3(2-3), 93-105. https://doi.org/10.1016/0167-6105(78)90002-8.
  34. Li, J., Delmas, A., Donn, M. and Willis, R. (2018), "Validation and comparison of different CFD simulation software predictions of urban wind environment based on AIJ wind tunnel benchmarks", Simulation Series, 50(7), 206-212. https://doi.org/10.22360/simaud.2018.simaud.027.
  35. Lim, Y.S., Wang, P.C., Yeo, J.J. and Yu, S.C.M. (2021), "Experimental and numerical studies for flow over a sierpinski tetrahedron for potential windbreak application", J. Wind Eng. Ind. Aerod, 216. https://doi.org/10.1016/j.jweia.2021.104712.
  36. Liu, J., Niu, J. and Xia, Q. (2016), "Combining measured thermal parameters and simulated wind velocity to predict outdoor thermal comfort", Build. Environ., 105, 185-197. https://doi.org/10.1016/j.buildenv.2016.05.038.
  37. London, C. (2017), Wind Effects and Tall Buildings Guidelines and best practice for assessing wind effects and tall buildings in the City of London. In Planning Advice Note.
  38. Mahgoub, A.O. and Ghani, S. (2021), "Numerical and experimental investigation of utilizing the porous media model for windbreaks CFD simulation", Sustain. Cities Soc., 65, 102648. https://doi.org/10.1016/j.scs.2020.102648.
  39. Melbourne, W.H. (1978), "Criteria for environmental wind conditions", J. Wind Eng. Ind. Aerod., 3(2-3), 241-249. https://doi.org/10.1016/0167-6105(78)90013-2.
  40. Miao, Y. and Lau, S.S.Y. (2023), "Effect of linear building blocks on the wind environment of streets between high-rise buildings: A case of Hong Kong", Int. Rev. Spatial Plan. Sustain. Develop., 11, 63-77. https://doi.org/10.14246/irspsd.11.363.
  41. Mishra, P. and Aharwal, K.R. (2018), "A review on selection of turbulence model for CFD analysis of air flow within a cold storage", IOP Conference Series: Materials Science and Engineering, 402(1). https://doi.org/10.1088/1757-899X/402/1/012145.
  42. Mochida, A. and Lun, I.Y.F. (2008), "Prediction of wind environment and thermal comfort at pedestrian level in urban area", J. Wind Eng. Ind. Aerod., 96(10-11), 1498-1527. https://doi.org/10.1016/j.jweia.2008.02.033.
  43. Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T. and Ooka, R. (2002), "Comparison of various k-ε models and DSM applied to flow around a high-rise building - Report on AIJ cooperative project for CFD prediction of wind environment", Wind Struct., 5(2-4), 227-244. https://doi.org/10.12989/was.2002.5.2_3_4.227.
  44. Montazeri, H. and Blocken, B. (2013), "CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis", Build. Environ., 60, 137-149. https://doi.org/10.1016/j.buildenv.2012.11.012.
  45. NajafKhosravi, S., Saadatjoo, P., Mahdavinejad, M. and Amindeldar, S. (2016), "The effect of roof details on natural ventilation efficiency in isolated single buildings", PLEA 2016 - Cities, Buildings, People: Towards Regenerative Environments.
  46. Naqsh Mohit Consulting Engineers (2016), Tabriz City Development and Construction Plan.
  47. Nazarian, N., Dumas, N., Kleissl, J. and Norford, L. (2019), "Effectiveness of cool walls on cooling load and urban temperature in a tropical climate", Energy Build., 187, 144-162. https://doi.org/10.1016/j.enbuild.2019.01.022.
  48. Oke, T.R. (2004), "Initial guidance to obtain representative meteorological observations at urban sites", World Meteorol. Organ., 81, 51.
  49. Partners, I. (2009), LentSpace. https://architizer.com/projects/lentspace/
  50. R.M. Aynsley, W.M. and B.J.V. (1977), Architectural Aerodynamics. Applied Science Publishers Ltd.
  51. Ricci, A., Guasco, M., Caboni, F., Orlanno, M., Giachetta, A. and Repetto, M.P. (2022), "Impact of surrounding environments and vegetation on wind comfort assessment of a new tower with vertical green park", Build. Environ., 207, 104809. https://doi.org/10.1016/j.buildenv.2021.108409.
  52. Saadatjoo, P, Mahdavinejad, M., Najaf Khosravi, S. and Kaveh, N. (2013), "Effect of courtyard proportion on natural ventilation efficiency", Int. J. Adv. Mech. Civil Eng., 3(5), 92-97.
  53. Saadatjoo, P. and Saligheh, E. (2021), "The role of buildings distribution pattern on outdoor airflow and received daylight in residential complexes; Case study: Residential complexes in Tehran", Naqshejahan-Basic Studies New Technol. Architect. Plan., 11(3), 67-92.
  54. Saadatjoo, P., Badamchizadeh, P. and Mahdavinejad, M. (2023), "Towards the new generation of courtyard buildings as a healthy living concept for post-pandemic era", Sustain. Cities Soc., 97. https://doi.org/10.1016/j.scs.2023.104726.
  55. Saadatjoo, P., Mahdavinejad, M. and Zhang, G. (2018), "A study on terraced apartments and their natural ventilation performance in hot and humid regions", Build. Simul., 11(2), 359-372. https://doi.org/10.1007/s12273-017-0407-7.
  56. Saadatjoo, P., Mahdavinejad, M., Zhang, G. and Vali, K. (2021), "Influence of permeability ratio on wind-driven ventilation and cooling load of mid-rise buildings", Sustain. Cities Soc., 70, 102894. https://doi.org/https://doi.org/10.1016/j.scs.2021.102894.
  57. Shirasawa, T., Tominaga, Y., Yoshie, R., Mochida, A., Yoshino, H. and Kataoka, H. (2003), "DEVELOPMENT OF CFD METHOD FOR PREDICTING WIND ENVIRONMENT AROUND A HIGH-RISE BUILDING : Part2 : The cross comparison of CFD results using various k-ε models for the flowfield around a building model with 4:4:1 shape(Environmental Engineering)", AIJ J. Technol. Des., 9(18), 169-174. https://doi.org/10.3130/aijt.9.169_2.
  58. Soligo, M.J., Irwin, P.A., Williams, C.J. and Schuyler, G.D. (1998), "A comprehensive assessment of pedestrian comfort including thermal effects", J. Wind Eng. Ind. Aerod., 77-78, 753-766. https://doi.org/10.1016/S0167-6105(98)00189-5.
  59. Spearman Rank Correlation Coefficient BT - The Concise Encyclopedia of Statistics (2008). Springer New York. https://doi.org/10.1007/978-0-387-32833-1_379
  60. Stathopoulos, T. (2006), "Pedestrian level winds and outdoor human comfort", J. Wind Eng. Ind. Aerod., 94(11), 769-780. https://doi.org/10.1016/j.jweia.2006.06.011/
  61. Tamura, Y., Xu, X. and Yang, Q. (2019), "Characteristics of pedestrian-level Mean wind speed around square buildings: Effects of height, width, size and approaching flow profile", J. Wind Eng. Ind. Aerod., 192, 74-87. https://doi.org/10.1016/j.jweia.2019.06.017.
  62. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
  63. Tsichritzis, L. and Nikolopoulou, M. (2019), "The effect of building height and facade area ratio on pedestrian wind comfort of London", J. Wind Eng. Ind. Aerod., 191, 63-75. https://doi.org/10.1016/j.jweia.2019.05.021.
  64. Urban Highways and Streets Design Guide, section 10:Pedestrain Ways, 95 (2020).
  65. van Druenen, T., van Hooff, T., Montazeri, H. and Blocken, B. (2019), "CFD evaluation of building geometry modifications to reduce pedestrian-level wind speed", Build. Environ., 163, 106293. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106293.
  66. Wang, B., Cot, L.D., Adolphe, L., Geoffroy, S. and Morchain, J. (2015), "Estimation of wind energy over roof of two perpendicular buildings", Energy Build., 88, 57-67. https://doi.org/https://doi.org/10.1016/j.enbuild.2014.11.072.
  67. Willemsen, E. and Wisse, J.A. (2007), "Design for wind comfort in The Netherlands: Procedures, criteria and open research issues", J. Wind Eng. Ind. Aerod., 95(9), 1541-1550. https://doi.org/https://doi.org/10.1016/j.jweia.2007.02.006.
  68. Williams, C.J., Hunter, M.A. and Waechter, W.F. (1990), "Criteria for assessing the pedestrian wind environment", J. Wind Eng. Ind. Aerod., 36(PART 2), 811-815. https://doi.org/10.1016/0167-6105(90)90078-Q.
  69. Williams, Colin J., Soligo, M.J. and Cote, J. (1992), "A discussion of the components for a comprehensive pedestrian level comfort criterion", J. Wind Eng. Ind. Aerod., 44(1-3), 2389-2390. https://doi.org/10.1016/0167-6105(92)90029-A.
  70. Woelke, M. (2007), "Eddy viscosity turbulence models employed by computational fluid dynamic", Prace Instytutu Lotnictwa, Nr 4(191), 92-113.
  71. Wong, N.H., Kwang Tan, A.Y., Chen, Y., Sekar, K., Tan, P.Y., Chan, D., Chiang, K. and Wong, N.C. (2010), "Thermal evaluation of vertical greenery systems for building walls", Build. Environ., 45(3), 663-672. https://doi.org/10.1016/j.buildenv.2009.08.005.
  72. Wu, H.G.J. (2017), Georgian Court Redevelopment.
  73. Ye, M., Chen, H.C. and Koop, A. (2023), "Verification and validation of CFD simulations of the NTNU BT1 wind turbine", J. Wind Eng. Ind. Aerod., 234. https://doi.org/10.1016/j.jweia.2023.105336.
  74. Zhang, X., Gao, Y., Tao, Q., Min, Y. and Fan, J. (2023), "Improving the pedestrian-level wind comfort by lift-up factors of panel residence complex: Field-measurement and CFD simulation", Build. Environ., 229. https://doi.org/10.1016/j.buildenv.2022.109947.
  75. Zhang, X., Tse, K.T., Weerasuriya, A.U., Li, S.W., Kwok, K.C.S., Mak, C.M., Niu, J. and Lin, Z. (2017), "Evaluation of pedestrian wind comfort near 'lift-up' buildings with different aspect ratios and central core modifications", Build. Environ., 124, 245-257. https://doi.org/10.1016/j.buildenv.2017.08.012.
  76. Zheng, S., Guldmann, J.M., Liu, Z., Zhao, L., Wang, J., Pan, X. and Zhao, D. (2020), "Predicting the influence of subtropical trees on urban wind through wind tunnel tests and numerical simulations", Sustain. Cities Soc., 57. https://doi.org/10.1016/j.scs.2020.102116.