DOI QR코드

DOI QR Code

Influence of external structure and internal stacking on wind load characteristics of large-span spherical shell structure

  • Xiaobing Liu (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University) ;
  • Anjie Chen (School of Civil Engineering, Shijiazhuang Tiedao University) ;
  • Qun Yang (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University) ;
  • Bin Feng (School of Civil Engineering, Shijiazhuang Tiedao University) ;
  • Xuedong Tian (School of Civil Engineering, Shijiazhuang Tiedao University)
  • Received : 2024.02.12
  • Accepted : 2024.05.18
  • Published : 2024.09.25

Abstract

To investigate the wind load characteristics of a large-span spherical shell structure, a rigid model pressure test was conducted in a wind tunnel laboratory. The study aimed to examine the impact of various external structures and internal stacking forms on the wind loads of a spherical shell structure in a practical engineering project. This project features two adjacent spherical structures, each spanning 130 m and standing 67 m tall. These two structures are connected by trestles and a transfer station. Variations in the shape factor and the integral force coefficient of the structure were compared and analyzed under different test cases. The results indicate that when two structures are arranged in series, with the adjacent structure positioned upstream, the shape factor of the structure is most affected, resulting in a significant reduction effect at the bottom of the windward surface. Compared to the external structure, the impact of various internal stacking forms on the shape factor of the structure is relatively weak. The adjacent structure significantly improves the wind resistance of the main structure. The integral force coefficient of the structure reaches its peak when internal stacking is full and is at its lowest when there is no internal stacking.

Keywords

Acknowledgement

This research was supported by the National Nature Science Foundation of China (Nos. 52078313 and 52008273), the Central Guided Local Science and Technology Development Funding Program (No. 236Z5407G and 236Z5410G), the Innovation research group project of Natural Science Foundation of Hebei Province (No. E2022210078), and the Shijiazhuang Tiedao University Graduate Innovation Funding Project (No. YC202413).

References

  1. Chen, L.L., Cui, H.M., Zheng, Y.F. and Liu, Q.K. (2019), "Wind load test study on long-span cylindrical reticulated shell structure", Eng. Mech., 36(S1), 189-193. http://dx.doi.org/10.6052/j.issn.1000-4750.2018.05.S038.
  2. Cheng, C.M. and Fu, C.L. (2010), "Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow", J. Wind Eng. Ind. Aerod., 98, 328-344. https://doi.org/10.1016/j.jweia.2009.12.002.
  3. Dong, S.L. and Qian, R.J. (2000), Analysis Theory and Calculation Method of Spatial Grid Structure, Construction Industry Press, Beijing, China.
  4. Feng, H.Y., Gao, H.J. and Liu, D.Q. (2013), "Study on wind load distribution of spherical shell under typhoon", Sichuan Build. Sci., 39(04), 83-86.
  5. GB 50009-2012 (2012), Load Code for the Design of Building Structures, China Architecture Industry Press, Beijing, China.
  6. Huang, P., Gu, M. and Ye, M.Y. (2011), "Experimental study on wind loads on cylindrical reticulated shells", Build. Struct., 41(S1), 1432-1437. https://link.cnki.net/doi/10.19701/j.jzjg.2011.s1.341.
  7. Huang, P., Lan, Z.K. and Gu, M. (2015), "Multi-parameter experimental research of wind loads on cylindrical reticulated shell structures of dry-coal sheds", Build. Struct., 45(17), 92-98+62. https://link.cnki.net/doi/10.19701/j.jzjg.2015.17.020.
  8. JGJ/T 338-2014 (2014), Standard for Wind Tunnel Test of Buildings and Structures. China Architecture Industry Press, Beijing, China.
  9. JTJ/T 481-2019 (2012), Standard for Wind Loads on Roof Structures, China Architecture Industry Press, Beijing, China.
  10. Kang, J.W., Nie, G.J. and Qian, R.J. (2009), "Research status and prospect of wind resistance of long-span structures", Space Struct., 15(01), 41-48+34.
  11. Li, Y., Xie, Q. and Yang, Z. (2022), "Investigation on the failure type of tower segments under equivalent static wind loads", Wind Struct, 34(2), 161-171. https://doi.org/10.12989/was.2022.34.2.161.
  12. Li, Y.Q. and Tamura, Y. (2004), "Wind-Resistant Analysis for Large-span Single-layer Reticulated Shells", Int. J. Space Struct., 19(1), 47-59. https://journals.sagepub.com/doi/abs/10.1260/026635104322988362.
  13. Li, Y.Q., Tamura, Y. and Shen, Z.Y. (2005), "Wind tunnel test study on wind pressure distribution characteristics of spherical shell surface", J. Build. Struct., 5, 104-111. https://doi.org/10.14006/j.jzjgxb.2005.05.015.
  14. Li, Y.Q., Tamura, Y., Yoshida, A., Katsumura, A. and Cho, K. (2006), "Wind loading and its effects on single-layer reticulated cylindrical shells", J. Wind Eng. Ind. Aerod., 94, 949-973. https://doi.org/10.1016/j.jweia.2006.04.004.
  15. Montes, P. and Fernandez, A. (2001), "Behaviour of a hemispherical dome subjected to wind loading", J. Wind Eng. Ind. Aerod., 89, 911-924. https://doi.org/10.1016/S0167-6105(01)00082-4.
  16. Qiu, Y. (2015), "Investigation of the Reynolds number effects on the aerodynamic characteristics of large span cylindrical roofs", Ph.D. Dissertation, Harbin Institute of Technology, Harbin, China.
  17. Su, N., Peng, S.T. and Hong, N.N. (2018), "Analyzing the background and resonant effects of wind-induced responses on large-span roofs", J. Wind Eng. Ind. Aerod., 183, 114-126. https://doi.org/10.1016/j.jweia.2018.10.021.
  18. Su, N., Peng, S.T., Sun, Y., Hong, N.N., Feng, R.D., Yu, B. and Yang, F. (2019), "Research and application on artificial neural network modeling of design wind load on large-span coal storage sheds", J. Build. Struct., 40(07), 34-41. https://doi.org/34-41. 10.14006/j.jzjgxb.2018.c197.
  19. Tavakol, M.M., Abouali, O. and Yaghoubi, M. (2015), "Large eddy simulation of turbulent flow around a wall mounted hemisphere", Appl. Mathem. Modelling, 39, 3596-3618. https://doi.org/10.1016/j.apm.2014.11.055.
  20. Tavakol, M.M., Yaghoubi, M. and Motlagh, M.M. (2010), "Airflow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers", Experimen. Thermal Fluid Sci., 34, 538-553. https://doi.org/10.1016/j.expthermflusci.2009.11.007.
  21. Taylor, T.J. (1991), "Wind pressures on a hemispherical dome", J. Wind Eng. Ind. Aerod., 40, 199-213. https://doi.org/10.1016/0167-6105(92)90365-H.
  22. Toy, N., Moss, W.D. and Savory, E. (1983), "Wind tunnel studies on a dome in turbulent boundary layers", J. Wind Eng. Ind. Aerod., 1, 201-212. https://doi.org/10.1016/0167-6105(83)90100-9.
  23. Wang, D.Y., Zhao, Z.D., Ou, T., Xin, Z.Y., Wang, M.M. and Zhang, Y.S. (2021), "Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods", Wind Struct, 32(1), 55-69. https://doi.org/10.12989/was.2021.32.1.55.
  24. Wang, J.Y. and Liu, W.W. (2012), "Morphology analysis on seashell-shaped structure", Build. Struct., 42(12), 69-73. https://link.cnki.net/doi/10.19701/j.jzjg.2012.12.014.
  25. Wang, X., Huang, P. and Gu, M. (2009), "Experimental investigation on wind load characteristics of hemispherical dome", Chinese J. Construct. Machinery, 3(7), 351-355. https://doi.org/10.15999/i.cnki.311926.2009.03.019.
  26. Wang, X., Huang, P. and Gu, M. (2009), "Experimental investigation on wind load characteristics of hemispherical dome", Chinese J. Construct. Machinery, 7(03), 351-355+378.
  27. Wood, J.N., Nayer, G.D., Schmidt, S., Schmidt, S. and Breuer, M. (2016), "Experimental Investigation and large-eddy simulation of the turbulent flow past a smooth and rigid hemisphere", Flow Turbulence Combust, 97(1), 79-119. https://doi.org/10.1007/s10494-015-9690-5.
  28. Wu, D., Wu, Y. and Zhang, J.S. (2010), "Wind-vibration characteristics and equivalent static wind load of the double-layer spherical reticulated shell", J. Harbin Institute Technol., 42(10), 1543-1547.
  29. Xiao, B. (2022), "Experimental Research of Reynolds Number Effects on the Aerodynamic Characteristics of Typical Curved Surface Structures", Ph.D. Dissertation, Shijiazhuang Tiedao University, Shijiazhuang, China.
  30. Yang, L.M., Ye, C., Yang, X. and Yang, X.Y. (2023), "Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof", Wind Struct, 36(2), 121-131. http://dx.doi.org/10.12989/was.2023.36.2.121.
  31. Zhai, J., Liu, Q.K. and Ma, W.Y. (2013), "Experimental study on wind load characteristics of spherical shell structure", Eng. Mech., 30(S1), 15-18. http://dx.doi.org/10.6052/j.issn.1000-4750.2012.05.S067.
  32. Zhang, J.L., Su, N., Peng, S.T. and Wang, X.L. (2020), "Study on wind load interference effects of the double-span cylindrical dry coal shed", Build. Struct., 50(S2), 201-208.
  33. Zheng, Y.T., Wu, Q.Y., Jia, Y.Y. and Liu, X.B. (2021), "Study on shape factor of wind load of large-span coal shed considering the influence of surrounding buildings", Eng. Mech., 38(S1), 72-76. http://dx.doi.org/10.6052/j.issn.1000-4750.2020.05.S014.