DOI QR코드

DOI QR Code

Enhancing prediction of the moment-rotation behavior in flush end plate connections using Multi-Gene Genetic Programming (MGGP)

  • Amirmohammad Rabbani (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Amir Reza Ghiami Azad (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Hossein Rahami (School of Engineering Science, College of Engineering, University of Tehran)
  • 투고 : 2023.08.13
  • 심사 : 2024.08.26
  • 발행 : 2024.09.25

초록

The prediction of the moment rotation behavior of semi-rigid connections has been the subject of extensive research. However, to improve the accuracy of these predictions, there is a growing interest in employing machine learning algorithms. This paper investigates the effectiveness of using Multi-gene genetic programming (MGGP) to predict the moment-rotation behavior of flush-end plate connections compared to that of artificial neural networks (ANN) and previous studies. It aims to automate the process of determining the most suitable equations to accurately describe the behavior of these types of connections. Experimental data was used to train ANN and MGGP. The performance of the models was assessed by comparing the values of coefficient of determination (R2), maximum absolute error (MAE), and root-mean-square error (RMSE). The results showed that MGGP produced more accurate, reliable, and general predictions compared to ANN and previous studies with an R2 exceeding 0.99, an RMSE of 6.97, and an MAE of 38.68, highlighting its advantages over other models. The use of MGGP can lead to better modeling and more precise predictions in structural design. Additionally, an experimentally-based regression analysis was conducted to obtain the rotational capacity of FECs. A new equation was proposed and compared to previous ones, showing significant improvement in accuracy with an R2 score of 0.738, an RMSE of 0.014, and an MAE of 0.024.

키워드

참고문헌

  1. Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2017), "Genetic programming based formulation to predict compressive strength of high strength concrete", Civil Eng. Infrastr. J., Univ. Tehran, 50, 207-219. https://doi.org/10.7508/ceij.2017.02.001.
  2. Abidelah, A., Bouchair, A. and Kerdal, D.E. (2012), "Experimental and analytical behavior of bolted end-plate connections with or without stiffeners", J. Constr. Steel Res., 76, 13-27. https://doi.org/10.1016/j.jcsr.2012.04.004.
  3. Abolmaali, A., Matthys, J.H., Farooqi, M. and Choi, Y. (2005), "Development of moment-rotation model equations for flush end-plate connections", J. Constr. Steel Res., 61, 1595-1612. https://doi.org/10.1016/j.jcsr.2005.05.004.
  4. Aggarwal, A.K. (1994), "Comparative tests on endplate beam-to-column connections", J. Constr. Steel Res., 30, 151-175. https://doi.org/10.1016/0143-974X(94)90048-5.
  5. Al-Jabri, K. and Cevik, A. (2019), "A new formulation for rotation of bare-steel joints at elevated temperatures using genetic programming", 17th International Workshop on Intelligent Computing in Engineering, EG-ICE 2010, Nottingham.
  6. Al-Jabri, K.S., Al-Alawi, S.M., Al-Saidy, A.H. and Alnuaimi, A.S. (2009), "An artificial neural network model for predicting the behaviour of semi-rigid joints in fire", Adv. Steel Constr., 5, 452-464. https://doi.org/10.18057/IJASC.2009.5.4.6.
  7. Ang, K.M. and Morris, G.A. (1984), "Analysis of three-dimensional frames with flexible beam-column connections", Can. J. Civil Eng., 11, 245-254. https://doi.org/10.1139/l84-037.
  8. Arul Jayachandran, S., Marimuthu, V., Prabha, P., Seetharaman, S. and Pandian, N. (2009), "Investigations on the behaviour of semi-rigid endplate connections", Adv. Steel Constr., 5, 432-451. https://doi.org/10.18057/IJASC.2009.5.4.5.
  9. Bernuzzi, C., Zandonini, R. and Zanon, P. (1996), "Experimental analysis and modelling of semi-rigid steel joints under cyclic reversal loading", J. Constr. Steel Res., 38, 95-123. https://doi.org/10.1016/0143-974X(96)00013-2.
  10. Bose, B., Youngson, G.K., Wang, Z.M. and EUROCODE, 3. (1996), "An appraisal of the design rules in eurocode 3 for bolted end-plate joints by comparison with experimental results", Proc. Inst. Civil Eng.-Struct. Build., 116, 221-234. https://doi.org/10.1680/istbu.1996.28289.
  11. Cevik, A. (2007), "Genetic programming based formulation of rotation capacity of wide flange beams", J. Constr. Steel Res., 63, 884-893. https://doi.org/10.1016/j.jcsr.2006.09.004.
  12. Coelho, A.M.G. and Bijlaard, F.S.K. (2007), "Experimental behaviour of high strength steel end-plate connections", J. Constr. Steel Res., 63, 1228-1240. https://doi.org/10.1016/j.jcsr.2006.11.010.
  13. Darrehzereshki, M., Ghiami Azad, A.R. and Ghassemieh, M. (2022), "Numerical study of a novel bolted moment connection for the beam to column connection using T-shapes and web angle sections", Sharif J. Civil Eng., Sharif Univ. Technol., 38, 99-110. https://doi.org/10.24200/J30.2022.59751.3069.
  14. Davison, J.B., Kirby, P.A. and Nethercot, D.A. (1987), "Rotational stiffness characteristics of steel beam-to-column connections", J. Constr. Steel Res., 8, 17-54. https://doi.org/10.1016/0143-974X(87)90052-6.
  15. Elflah, M., Theofanous, M., Dirar, S. and Yuan, H. (2019), "Behaviour of stainless steel beam-to-column joints-Part 1: Experimental investigation", J. Constr. Steel Res., 152, 183-193. https://doi.org/10.1016/j.jcsr.2018.02.040.
  16. Elgamel, H., Ismail, M.K., Ashour, A. and El-Dakhakhni, W. (2023), "Backbone model for reinforced concrete block shear wall components and systems using controlled multigene genetic programming", Eng. Struct., 274, 115173. https://doi.org/10.1016/j.engstruct.2022.115173.
  17. Elkady, A. (2022), "Response characteristics of flush end-plate connections", Eng. Struct., 269, 114856. https://doi.org/10.1016/j.engstruct.2022.114856.
  18. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2, 280-291. https://doi.org/10.1139/l75-026.
  19. Gandomi, A.H., Alavi, A.H., Kazemi, S. and Alinia, M.M. (2009), "Behavior appraisal of steel semi-rigid joints using linear genetic programming", J. Constr. Steel Res., 65, 1738-1750. https://doi.org/10.1016/j.jcsr.2006.09.004.
  20. Ghahremani, B. and Rizzo, P. (2022), "Multi-gene genetic programming for the prediction of the compressive strength of concrete mixtures", Comput. Concrete, 30, 225. https://doi.org/10.12989/cac.2022.30.3.225.
  21. Kishi, N. and Chen, W.F. (1990), "Moment-rotation relations of semirigid connections with angles", J. Struct. Eng., 116, 1813-1834. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813).
  22. Kong, Z. and Kim, S.E. (2017), "Moment-rotation behavior of top-and seat-angle connections with double web angles", J. Constr. Steel Res., 128, 428-439. https://doi.org/10.1016/j.jcsr.2016.09.010.
  23. Kong, Z., Hong, S., Vu, Q.V., Cao, X., Kim, S.E. and Yu, B. (2020), "New equations for predicting initial stiffness and ultimate moment of flush end-plate connections", J. Constr. Steel Res., 175, 106336. https://doi.org/10.1016/j.jcsr.2020.106336.
  24. Koroglu, M.A., Koken, A., Arslan, M.H. and C evik, A. (2011), "Genetic programming based modeling of shear capacity of composite beams with profiled steel sheeting", Adv Steel Constr., 7, 157-172. https://doi.org/10.18057/IJASC.2011.7.2.3.
  25. Koza, J.R. (1994), Genetic Programming II, MIT Press, Cambridge.
  26. Kueh, A.B.H. (2021), "Artificial neural network and regressed beam-column connection explicit mathematical moment-rotation expressions", J. Build. Eng., 43, 103195. https://doi.org/10.1016/j.jobe.2021.103195.
  27. Mak, L. and Elkady, A. (2021), "Experimental database for steel flush end-plate connections", J. Struct. Eng., 147, 4721006. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003064.
  28. Mohamadi-Shoore, M.R. and Mofid, M. (2011), "New modeling for moment-rotation behavior of bolted endplate connections", Scientia Iranica, 18, 827-834. https://doi.org/10.1016/j.scient.2011.07.015.
  29. Mohamadi-Shooreh, M.R. and Mofid, M. (2008), "Parametric analyses on the initial stiffness of flush end-plate splice connections using FEM", J. Constr. Steel Res., 64, 1129-1141. https://doi.org/10.1016/j.jcsr.2007.09.010.
  30. Mohamadi-Shooreh, M.R., Mofid, M. and McCabe, S.L. (2013), "Empirical model of the moment-rotation curve of beam-to-beam bolted flush endplate connections", J. Struct. Eng., 139, 66-72. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000597.
  31. Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment End-Plate Connections, American Institute of Steel Construction.
  32. Niazkar, M. (2023), "Multigene genetic programming and its various applications", Handbook of Hydroinformatics, Elsevier, 321-332.
  33. Ostrander, J.R. (1970), "An experimental investigation of end plate connections", University of Saskatchewan.
  34. Ostrowski, K. and Kozlowski, A. (2017), "Rotation capacity of bolted flush end-plate stiffened beam-to-column connection", Civil Environ. Eng. Report., 25, 173-184. https://doi.org/10.1515/ceer-2017-0028
  35. Picard, A., Giroux, Y.M. and Brun, P. (1976), "Discussion: Analysis of flexibly connected steel frames", Can. J. Civil Eng., 3, 350-352. https://doi.org/10.1139/l76-033.
  36. Prinz, G.S., Nussbaumer, A., Borges, L. and Khadka, S. (2014), "Experimental testing and simulation of bolted beam-column connections having thick extended endplates and multiple bolts per row", Eng. Struct., 59, 434-447. https://doi.org/10.1016/j.engstruct.2013.10.042.
  37. Ramberg, W. and Osgood, W.R. (1943), Description of Stress-Strain Curves by Three Parameters.
  38. Safa, M. and Kachitvichyanukul, V. (2019), "Moment rotation prediction of precast beam to column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  39. Searson, D. (2009), "Genetic programming & symbolic regression for MATLAB", School of Computing Science, Newcastle University, UK.
  40. Shah, S.N.R., Sulong, N.H.R. and El-Shafie, A. (2018), "New approach for developing soft computational prediction models for moment and rotation of boltless steel connections", Thin Wall. Struct., 133, 206-215. https://doi.org/10.1016/j.tws.2018.09.032.
  41. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019), "Estimation of moment and rotation of steel rack connections using extreme learning machine", Steel Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  42. Shek, P.N., Tahir, M.M., Sulaiman, A. and Tan, C.S. (2012), "Experimental evaluation of flush end-Plate connection with built-up hybrid beam section", Adv. Struct. Eng., 15, 331-341. https://doi.org/10.1260/1369-4332.15.2.331.
  43. Shi, G., Shi, Y. and Wang, Y. (2007), "Behaviour of end-plate moment connections under earthquake loading", Eng. Struct., 29, 703-716. https://doi.org/10.1016/j.engstruct.2006.06.016.
  44. Standard, B. (2006), Eurocode 3-Design of steel structures-, BS EN 1993-1, 1, 2005.
  45. Tahir, M.M., Hussein, M.A., Sulaiman, A. and Mohamed, S. (2009), "Comparison of component method with experimental tests for flush end-plate connections using hot-rolled perwaja steel sections", Int. J. Steel Struct., 9, 161-174. https://doi.org/10.1007/BF03249491.
  46. Tran, V.L. and Kim, J.K. (2022), "Revealing the nonlinear behavior of steel flush endplate connections using ANN-based hybrid models", J. Build. Eng., 57, 104878. https://doi.org/10.1016/j.jobe.2022.104878.
  47. Wu, F.H. and Chen, W.F. (1990), "A design model for semi-rigid connections", Eng. Struct., 12, 88-97. https://doi.org/10.1016/0141-0296(90)90013-I.
  48. Yee, Y.L. and Melchers, R.E. (1986), "Moment-rotation curves for bolted connections", J. Struct. Eng., 112, 615-635. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(615).
  49. Zoetemeijer, P. and Kolstein, M.H. (1975), "Bolted beam-column connections with short end plate", Report 6-75-20 KV-4, University of Technology Delft.