DOI QR코드

DOI QR Code

Investigating thermo-mechanical stresses in functionally graded disks using Navier's method for different loading conditions

  • Sanjay Kumar Singh (Department of Mechanical Engineering, Chhatrapati Shivaji Institute of Technology Durg) ;
  • Lakshman Sondhi (Department of Mechanical Engineering, Shri Shankaracharya Technical Campus Bhilai) ;
  • Rakesh Kumar Sahu (Department of Mechanical Engineering, Visvesvaraya National Institute of Technology) ;
  • Royal Madan (Department of Mechanical Engineering, Graphic Era (Deemed to be University)) ;
  • Sanjay Yadav (Department of Mechanical Engineering, I.T.S Engineering College)
  • 투고 : 2024.05.21
  • 심사 : 2024.09.03
  • 발행 : 2024.09.25

초록

In the present work, the deformation and stresses induced in a functionally graded disk have been reported for different loading conditions. The governing differential equation is solved using the classical method namely Navier's method by considering thermal and mechanical boundary conditions at the surface of the disk. To simplify solving the second-order differential equation, a plane stress condition was assumed. Following validation using a one-dimensional steady-state heat condition problem, temperature variations were computed for constant heat generation and varying conductivity. The research aims to investigate both the individual and combined effects of rotation, gravity, and temperature with constant heat generation on a hollow disk operating under complex loading conditions. The results demonstrated a high degree of accuracy when compared with those in existing literature. Material properties, such as Young's modulus, density, conductivity, and thermal expansion coefficient, were modeled using a power law variation along the disk's radius by considering aluminum as a base material. The proposed analytical method is straightforward, providing valuable insights into the behavior of disks under various loading conditions. This method is particularly useful for researchers and industries in selecting appropriate loading conditions and grading parameters for engineering applications, including aerospace components, energy systems, and rotary machinery parts.

키워드

참고문헌

  1. Afsar, A.M. and Go, J. (2010), "Finite element analysis of thermoelastic field in a rotating FGM circular disk", Appl. Math. Model., 34(11), 3309-3320. https://doi.org/10.1016/j.apm.2010.02.022.
  2. Allam, M.N.M., Tantawy, R. and Zenkour, A.M. (2018), "Thermoelastic stresses in functionally graded rotating annular disks with variable thickness", J. Theor. Appl. Mech., 56(4), 1029-1041. https://doi.org/10.15632/jtam-pl.56.4.1029.
  3. Almasi, D., Sadeghi, M., Lau, W.J., Roozbahani, F. and Iqbal, N. (2016), "Functionally graded polymeric materials: A brif review of current fabrication methods and introduction of a novel fabrication method", Mater. Sci. Eng. C, 64, 102-107. https://doi.org/10.1016/j.msec.2016.03.053.
  4. Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., 28(4), 499-513. http://doi.org/10.12989/sss.2021.28.4.499.
  5. Ansari, M., Jabari, E. and Toyserkani, E. (2021), "Opportunities and challenges in additive manufacturing of functionally graded metallic materials via powder-fed laser directed energy deposition: A review", J. Mater. Proc. Technol., 294, 117117. https://doi.org/10.1016/j.jmatprotec.2021.117117.
  6. Arefi, M. and Moghaddam, S.K. (2019), "Electro-elastic analysis of functionally graded piezoelectric variable thickness rotating disk under thermal environment", Struct. Eng. Mech., 71(1), 23-35. https://doi.org/10.12989/sem.2019.71.1.023.
  7. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2022), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 38(5), 4051-4072. https://doi.org/10.1007/s00366-021-01382-y.
  8. Ayvaz, Y. and Oguzhan, C.B. (2008), "Free vibration analysis of plates resting on elastic foundations using modified Vlasov model", Struct. Eng. Mech., 28(6), 635-658. https://doi.org/10.12989/sem.2008.28.6.635.
  9. Bounouara, F., Sadoun, M., Saleh, M.M.S., Chikh, A., Bousahla, A.A., Kaci, A., ... & Tounsi, A. (2023), "Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates", Steel Compos. Struct., 47(6), 693-707. https://doi.org/10.12989/scs.2023.47.6.693.
  10. Bourada, F., Bousahla, A.A., Tounsi, A., Tounsi, A., Tahir, S.I., Al-Osta, M.A. and Do-Van, T. (2023), "An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates", Comput. Concrete, 32(1), 61-74. https://doi.org/10.12989/cac.2023.32.1.061.
  11. Bui, T.Q. and Nguyen, M.N. (2011), "A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates", Struct. Eng. Mech., 39(4), 579-598. https://doi.org/10.12989/sem.2011.39.4.579.
  12. Callioglu, H. (2011), "Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution", Sadhana, 36(1), 53-64. https://doi.org/10.1007/s12046-011-0005-9.
  13. Callioglu, H., Bektas, N.B. and Sayer, M. (2011), "Stress analysis of functionally graded rotating discs: Analytical and numerical solutions", Acta Mechanica Sinica, 27(6), 950-955. https://doi.org/10.1007/s10409-011-0499-8.
  14. Cao, J., Du, J., Fan, Q., Yang, J., Bao, C. and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
  15. Chen, R., Zhao, B., Xin, Q., Niu, X., Xie, Z., Lu, X. and Zou, D. (2024), "Analysis of transient lubrication and wear coupling behaviors considering thermal effect and journal misalignment for main bearings under dynamic load", Wear, 554-555, 205478. https://doi.org/10.1016/j.wear.2024.205478.
  16. Chen, Y. and Liou, F. (2020), "Additive manufacturing of metal functionally graded materials: A review", 2018 International Solid Freeform Fabrication Symposium.
  17. Demirbas, M.D., Ekici, R. and Apalak, M.K. (2020), "Thermoelastic analysis of temperature-dependent functionally graded rectangular plates using finite element and finite difference methods", Mech. Adv. Mater. Struct., 27(9), 707-724. https://doi.org/10.1080/15376494.2018.1494871.
  18. Dhananjaya, H.R., Nagabhushanam, J., Pandey, P.C. and Jumaat, M. (2010), "New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method", Struct. Eng. Mech., 36(5), 625-642. https://doi.org/10.12989/sem.2010.36.5.625.
  19. Dong, J., Liu, Y., Yuan, S., Li, K., Zhang, F., Guan, Z., Chai, H.K. and Wang, Q. (2024), "Mechanical behavior and impact resistance of rubberized concrete enhanced by basalt fiber-epoxy resin composite", Constr. Build. Mater., 435, 136836. https://doi.org/10.1016/j.conbuildmat.2024.136836.
  20. Durodola, J.F. and Attia, O. (2000), "Deformation and stresses in functionally graded rotating disks", Compos. Sci. Technol., 60(7), 987-995. https://doi.org/10.1016/S0266-3538(99)00197-9.
  21. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.
  22. Eratli, N. and Akoz, A.Y. (2002), "Free vibration analysis of Reissner plates by mixed finite element", Struct. Eng. Mech., 13(3), 277-298. https://doi.org/10.12989/sem.2002.13.3.277.
  23. Eslami, M.R., Babaei, M.H. and Poultangari, R. (2005), "Thermal and mechanical stresses in a functionally graded thick sphere", Int. J. Press. Ves. Pip., 82(7), 522-527. https://doi.org/10.1016/j.ijpvp.2005.01.002.
  24. Gong, J.F., Ming, P.J., Xuan, L.K. and Zhang, W.P. (2014), "Thermoelastic analysis of three-dimensional functionally graded rotating disks based on finite volume method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 228(4), 583-598. https://doi.org/10.1177/0954406213489933.
  25. Guo, Y., Wang, L., Zhang, Z., Cao, J., Xia, X. and Liu, Y. (2024), "Integrated modeling for retired mechanical product genes in remanufacturing: A knowledge graph-based approach", Adv. Eng. Inform., 59, 102254. https://doi.org/10.1016/j.aei.2023.102254.
  26. Hadji, L. and Avcar, M. (2020), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/jacm.2020.35328.2628.
  27. Jabbari, M., Ghannad, M. and Nejad, M.Z. (2016), "Effect of thickness profile and FG function on rotating disks under thermal and mechanical loading", J. Mech., 32(1), 35-46. https://doi.org/10.1017/jmech.2015.95.
  28. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
  29. Kursun, A. and Topcu, M. (2013), "Thermal stress analysis of functionally graded disc with variable thickness due to linearly increasing temperature load", Arab. J. Sci. Eng., 38(12), 3531-3549. https://doi.org/10.1007/s13369-013-0626-x.
  30. Lafi, D.E., Bouhadra, A., Mamen, B., Menasria, A., Bourada, M., Bousahla, A.A., ... & Yaylaci, M. (2024), "Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations", Struct. Eng. Mech., 89(2), 103-119. https://doi.org/10.12989/sem.2024.89.2.103.
  31. Lin, M., Yi, A., Lin, R., Wu, X., He, B., Zhang, B. and Yang, C. (2024), "Underwater fluid-driven soft dock for dynamic recovery of AUVs with improved pose tolerance", Ocean Eng., 309, 118466. https://doi.org/10.1016/j.oceaneng.2024.118466.
  32. Liu, Y., Liu, Y., Wang, T., Wang, Z. and Huang, Q. (2024), "Mathematical modeling and analysis of the tailor rolled blank manufacturing process", Int. J. Mech. Sci., 266, 108991. https://doi.org/10.1016/j.ijmecsci.2024.108991.
  33. Long, X., Chong, K., Su, Y., Chang, C. and Zhao, L. (2023), "Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method", Int. J. Fatig., 175, 107778. https://doi.org/10.1016/j.ijfatigue.2023.107778.
  34. Madan, R. and Bhowmick, S. (2021), "Limit elastic analysis of functionally graded rotating disks under thermo-mechanical loading", Int. J. Appl. Mech., 13(03), 2150033. https://doi.org/10.1142/S1758825121500332.
  35. Madan, R., Bhowmick, S., Hadji, L. and Alnujaie, A. (2023), "Limit angular speed analysis of porous functionally graded rotating disk under thermo-mechanical loading", Multidisc. Model. Mater. Struct., 19(2), 311-323. https://doi.org/10.1108/MMMS-09-2022-0197.
  36. Malekzadeh, P. (2009), "Two-dimensional in-plane free vibrations of functionally graded circular arches with temperature-dependent properties", Compos. Struct., 91(1), 38-47. https://doi.org/10.1016/j.compstruct.2009.04.034.
  37. Manthena, V.R. and Kedar, G.D. (2018), "Transient thermal stress analysis of a functionally graded thick hollow cylinder with temperature-dependent material properties", J. Therm. Stress., 41(5), 568-582. https://doi.org/10.1080/01495739.2017.1402669. 
  38. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., AlZahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  39. Mudhaffar, S.M., Chikh, A. and Tounsi, A. (2023), "Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads", Struct. Eng. Mech., 86(2), 167-180. https://doi.org/10.12989/sem.2023.86.2.167.
  40. Nayak, P. and Saha, K. (2016), "Elastic limit angular speed of solid and annular disks under thermomechanical loading", Int. J. Eng., Sci. Technol., 8(2), 30-45. https://doi.org/10.4314/ijest.v8i2.3.
  41. Nie, G.J. and Batra, R.C. (2010), "Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness", Compos. Struct., 92(3), 720-729. https://doi.org/10.1016/j.compstruct.2009.08.052.
  42. Peng, X. and Li, X. (2009), "Thermoelastic analysis of functionally graded annulus with arbitrary gradient", Appl. Math. Mech., 30(10), 1211-1220. https://doi.org/10.1007/s10483-009-1001-7.
  43. Peng, X.L. and Li, X.F. (2010), "Thermal stress in rotating functionally graded hollow circular disks", Compos. Struct., 92(8), 1896-1904. https://doi.org/10.1016/j.compstruct.2010.01.008.
  44. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  45. Shahriari, B. and Safari, M. (2019), "Stress analysis of FGM rotating disk subjected to mechanical and thermal loads in aircraft gas turbine engine", Mech. Adv. Compos. Struct., 7(1), 1-13. https://doi.org/10.22075/macs.2019.14780.1145.
  46. Shariyat, M. (2009), "A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinders with temperature-dependent materials under thermo-mechanical loads", Int. J. Press. Ves. Pip., 86(4), 280-289. https://doi.org/10.1016/j.ijpvp.2008.09.004.
  47. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  48. Tounsi, A., Bousahla, A.A., Tahir, S.I., Mostefa, A.H., Bourada, F., Al-Osta, M.A. and Tounsi, A. (2024), "Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation", Int. J. Struct. Stab. Dyn., 24(11), 2450117. https://doi.org/10.1142/S0219455424501177.
  49. Tounsi, A., Mostefa, A.H., Attia, A., Bousahla, A.A., Bourada, F., Tounsi, A. and Al-Osta, M.A. (2023), "Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation", Struct. Eng. Mech., 86(1), 1-16. https://doi.org/10.12989/sem.2023.86.1.001.
  50. Tounsi, A., Mostefa, A.H., Bousahla, A.A., Tounsi, A., Ghazwani, M.H., Bourada, F. and Bouhadra, A. (2023), "Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations", Steel Compos. Struct., 49(3), 307-323. https://doi.org/10.12989/scs.2023.49.3.307.
  51. Tutuncu, N. and Temel, B. (2009), "A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres", Compos. Struct., 91(3), 385-390. https://doi.org/10.1016/j.compstruct.2009.06.009.
  52. Tutuncu, N. and Temel, B. (2013), "An efficient unified method for thermoelastic analysis of functionally graded rotating disks of variable thickness", Mech. Adv. Mater. Struct., 20(1), 38-46. https://doi.org/10.1080/15376494.2011.581413.
  53. Wang, K., Liu, Z., Wu, M., Wang, C., Shen, W. and Shao, J. (2024), "Experimental study of mechanical properties of hot dry granite under thermal-mechanical couplings", Geothermic., 119, 102974. https://doi.org/10.1016/j.geothermics.2024.102974.
  54. Wang, Y. and Sigmund, O. (2023), "Multi-material topology optimization for maximizing structural stability under thermo-mechanical loading", Comput. Meth. Appl. Mech. Eng., 407, 115938. https://doi.org/10.1016/j.cma.2023.115938.
  55. Wu, L. (2006), "Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method", Struct. Eng. Mech., 22(3), 331-349. https://doi.org/10.12989/sem.2006.22.3.331.
  56. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin Wall. Struct., 170, 108549. https://doi.org/10.1016/j.tws.2021.108549.
  57. Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2023), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 39(2), 1127-1141. https://doi.org/10.1007/s00366-021-01498-1.
  58. Zhan, P., Lou, J., Chen, T., Li, G., Xu, C. and Wei, Y. (2024), "Dynamic hysteresis compensation and iterative learning control for underwater flexible structures actuated by macro fiber composites", Ocean Eng., 298, 117242. https://doi.org/10.1016/j.oceaneng.2024.117242.
  59. Zheng, Y., Bahaloo, H., Mousanezhad, D., Mahdi, E., Vaziri, A. and Nayeb-Hashemi, H. (2016), "Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity", Int. J. Mech. Sci., 119, 283-293. https://doi.org/10.1016/j.ijmecsci.2016.10.018.
  60. Zheng, Y., Bahaloo, H., Mousanezhad, D., Vaziri, A. and Nayeb-Hashemi, H. (2017), "Displacement and stress fields in a functionally graded fiber-reinforced rotating disk with nonuniform thickness and variable angular velocity", J. Eng. Mater. Technol., 139(3), 031010. https://doi.org/10.1115/1.4036242.
  61. Zhou, H., Qin, G. and Wang, Z. (2019), "Heat conduction analysis for irregular functionally graded material geometries using the meshless weighted least-square method with temperature-dependent material properties", Numer. Heat Transf., Part B: Fundament., 75(5), 312-324. https://doi.org/10.1080/10407790.2019.1627814.