DOI QR코드

DOI QR Code

Thermal buckling Analysis of functionally graded plates using trigonometric shear deformation theory for temperature-dependent material properties

  • Lazreg Hadji (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Royal Madan (Department of Mechanical Engineering, Grphic Era (Deemed to be University)) ;
  • Hassen Ait Atmane (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Fabrice Bernard (Laboratory of Civil Engineering and Mechanical Engineering, INSA Rennes, University of Rennes) ;
  • Nafissa Zouatnia (Department of Civil Engineering, University of Tiaret) ;
  • Abdelkader Safa (Department of Civil Engineering, University of Relizane)
  • 투고 : 2024.05.10
  • 심사 : 2024.08.22
  • 발행 : 2024.09.25

초록

In this paper, thermal buckling analysis was conducted using trigonometric shear deformation theory, which employs only four unknowns instead of five. This present theory is variationally consistent, and accounts for a trigonometric variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The grading is provided along the thickness of the plate as per power law volume fraction variation of metal-matrix ceramic reinforced composite. The non-linear governing equation problem was solved for simply supported boundary conditions. Three types of thermal loads are assumed in this work: uniform, linear and non-linear distribution through-the-thickness. It is well known that material properties change with temperature variations and so the analysis was performed for both the cases: temperature-dependent (TD) and temperature-independent (TID) material properties. The impact on thermal buckling for both linear and non-linear temperature variation was considered. The results were validated for the TID case with other theories and were found to be in good agreement. Furthermore, a comprehensive analysis was performed to study the impact of grading indices and geometrical parameters, such as aspect ratio (a/b) and side-to-thickness ratio (a/h), on the thermal buckling of the FG plate.

키워드

참고문헌

  1. Almasi, D., Sadeghi, M., Lau, W.J., Roozbahani, F. and Iqbal, N. (2016), "Functionally graded polymeric materials: A brif review of current fabrication methods and introduction of a novel fabrication method", Mater. Sci. Eng. C, 64, 102-107. https://doi.org/10.1016/j.msec.2016.03.053.
  2. Apalak, M.K. and Demirbas, M.D. (2015), "Thermal residual stresses in in-plane functionally graded clamped hollow circular plates subjected to an edge heat flux", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 229(3), 236-260. https://doi.org/10.1177/1464420713509699.
  3. Arefi, M. and Amabili, M. (2021), "A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory", Compos. Struct., 257, 113100. https://doi.org/10.1016/j.compstruct.2020.113100.
  4. Barbaros, I., Yang, Y., Safaei, B., Yang, Z., Qin, Z. and Asmael, M. (2022), "State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials", Nanotechnol. Rev., 11(1), 321-371. https://doi.org/10.1515/ntrev-2022-0017.
  5. Batou, B. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  6. Bouiadjra, M.B., Ahmed Houari, M.S. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665.
  7. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  8. Dai, H.L., Rao, Y.N. and Dai, T. (2016), "A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000-2015", Compos. Struct., 152, 199-225. https://doi.org/10.1016/j.compstruct.2016.05.042.
  9. Demirbas, M.D., Ekici, R. and Apalak, M.K. (2020), "Thermoelastic analysis of temperature-dependent functionally graded rectangular plates using finite element and finite difference methods", Mech. Adv. Mater. Struct., 27(9), 707-724. https://doi.org/10.1080/15376494.2018.1494871.
  10. Djilali Djebbour, K., Nebab, M., Ait Atmane, H., Alghanmi, R., Hadji, L., Bennai R. (2024), "An enhanced quasi-3D HSDT for free vibration analysis of porous FG-CNT beams on a new concept of orthotropic VE-foundations", Mech. Adv. Mater. Struct., 1-17. https://doi.org/10.1080/15376494.2024.2356728.
  11. Ebrahimi, F. and Salari, E. (2017), "Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions", Smart Struct. Syst., 19(3), 243-257. https://doi.org/10.12989/SSS.2017.19.3.243.
  12. Hadji, L. (2020), "Vibration analysis of FGM beam: Effect of the micromechanical models", Couple. Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
  13. Hadji, L. and Avcar, M. (2021). "Free vibration analysis of FG Porous Sandwich Plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/jacm.2020.35328.2628.
  14. Hadji, L., Amoozgar, M. and Tounsi, A. (2022), "Non-linear thermal buckling of FG plates with porosity", Steel Compos. Struct., 42(5), 711-722. https://doi.org/10.12989/scs.2022.42.5.711.
  15. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32, 925-942. https://doi.org/10.1007/s10483-011-1470-9.
  16. Hadji, L., Plevris, V., Madan, R. and Ait Atmane, H. (2024), "Multi-directional functionally graded sandwich plates: buckling and free vibration analysis with refined plate models under various boundary conditions", Comput., 12(4), 65. https://doi.org/10.3390/computation12040065.
  17. He, L., Maalla, A., Zhou, X. and Tang, H. (2024), "Buckling and post-buckling of anisogrid lattice-core sandwich plates with nanocomposite skins", Thin Wall. Struct., 199, 111828. https://doi.org/10.1016/j.tws.2024.111828.
  18. Hosseini-Hashemi, Sh., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
  19. Hosseini-Hashemi, Sh., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
  20. Jalali, S.K. and Heshmati, M. (2020), "Vibration analysis of tapered circular poroelastic plates with radially graded porosity using pseudo-spectral method", Mech. Mater., 140, 103240. https://doi.org/10.1016/j.mechmat.2019.103240.
  21. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626.
  22. Jiang, Y., Liu, L., Yan, J. and Wu, Z. (2024), "Room-to-low temperature thermo-mechanical behavior and corresponding constitutive model of liquid oxygen compatible epoxy composites", Compos. Sci. Technol., 245, 110357. https://doi.org/10.1016/j.compscitech.2023.110357.
  23. Koyama, S., Katano, S., Saiki, I. and Iwakuma, T. (2011), "A modification of the Mori-Tanaka estimate of average elastoplastic behavior of composites and polycrystals with interfacial debonding", Mech. Mater., 43(10), 538-555. https://doi.org/10.1016/j.mechmat.2011.06.010.
  24. Lal, R. and Ahlawat, N. (2017), "Buckling and vibrations of two-directional functionally graded circular plates subjected to hydrostatic in-plane force", J. Vib. Control, 23(13), 2111-2127. https://doi.org/10.1177/1077546315611328.
  25. Lal, R. and Saini, R. (2020), "Vibration analysis of functionally graded circular plates of variable thickness under thermal environment by generalized differential quadrature method", J. Vib. Control, 26(1-2), 73-87. https://doi.org/10.1177/1077546319876389.
  26. Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 209, 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.
  27. Li, L. and Zhang, D.G. (2016), "Free vibration analysis of rotating functionally graded rectangular plates", Compos. Struct., 136, 493-504. https://doi.org/10.1016/j.compstruct.2015.10.013.
  28. Li, X., Liu, Y. and Leng, J. (2023), "Large-scale fabrication of superhydrophobic shape memory composite films for efficient anti-icing and de-icing", Sustain. Mater. Technol., 37, e00692. https://doi.org/10.1016/j.susmat.2023.e00692.
  29. Lieu, Q.X., Lee, D., Kang, J. and Lee, J. (2019), "NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates", Mech. Adv. Mater. Struct., 26(12), 1064-1080. https://doi.org/10.1080/15376494.2018.1430273.
  30. Liu, C.F. and Lee, Y.T. (2000), "Finite element analysis of three-dimensional vibrations of thick circular and annular plates", J. Sound Vib., 233(1), 63-80. https://doi.org/10.1006/jsvi.1999.2791.
  31. Madan, R., Bhowmick, S., Hadji, L. and Alnujaie, A. (2023), "Limit angular speed analysis of porous functionally graded rotating disk under thermo-mechanical loading", Multidisc. Model. Mater. Struct., 19(2), 311-323. https://doi.org/10.1108/MMMS-09-2022-0197.
  32. Malekzadeh, P. (2009), "Two-dimensional in-plane free vibrations of functionally graded circular arches with temperature-dependent properties", Compos. Struct., 91(1), 38-47. https://doi.org/10.1016/j.compstruct.2009.04.034.
  33. Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.
  34. Manthena, V.R. and Kedar, G.D. (2018), "Transient thermal stress analysis of a functionally graded thick hollow cylinder with temperature-dependent material properties", J. Therm. Stress., 41(5), 568-582. https://doi.org/10.1080/01495739.2017.1402669.
  35. Mellal, F., Bennai, R., Avcar, M., Nebab, M. and Atmane, H.A. (2023), "On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory", Acta Mechanica, 234(9), 3955-3977. https://doi.org/10.1007/s00707-023-03603-5
  36. Nebab, M., Atmane, H.A., Bennai, R. and Dahmane, M. (2024), "Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT", Struct. Eng. Mech., 90(1), 83-96. https://doi.org/10.12989/sem.2024.90.1.083.
  37. Nebab, M., Dahmane, M., Belqassim, A., Atmane, H.A., Bernard, F., Benadouda, M., ... & Hadji, L. (2023), "Fundamental frequencies of cracked FGM beams with influence of porosity and Winkler/Pasternak/Kerr foundation support using a new quasi-3D HSDT", Mech. Adv. Mater. Struct., Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2023.2294371.
  38. Nie, G.J. and Batra, R.C. (2010), "Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness", Compos. Struct., 92(3), 720-729. https://doi.org/10.1016/j.compstruct.2009.08.052.
  39. Ould Larbi, L., Saad, M., Zouatnia, N., Hadji, L. and Sayyad, A.S. (2024), "A simple refined plate theory for buckling problems of in-plane bi-directional functionally graded plates with porosity under various boundary conditions", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2024.2346946.
  40. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  41. Safa, A., Hadji, L., Bourada, M, and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  42. Shahrjerdi, A., Mustapha, F., Bayat, M., Sapuan, S.M. and Majid, D.L.A. (2011), "Fabrication of functionally graded hydroxyapatite-titanium by applying optimal sintering procedure and powder metallurgy", Int. J. Phys. Sci., 6(9), 2258-2267.
  43. Shariyat, M. (2009), "A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinders with temperature-dependent materials under thermo-mechanical loads", Int. J. Press. Ves. Pip., 86(4), 280-289. https://doi.org/10.1016/j.ijpvp.2008.09.004.
  44. Shen, Z., Dong, R., Li, J., Su, Y. and Long, X. (2024), "Determination of gradient residual stress for elastoplastic materials by nanoindentation", J. Manuf. Proc., 109, 359-366. https://doi.org/10.1016/j.jmapro.2023.10.030.
  45. Shi, J., Zhao, B., Tu, L., Xin, Q., Xie, Z., Zhong, N. and Lu, X. (2024), "Transient lubrication analysis of journal-thrust coupled bearing considering time-varying loads and thermal-pressure coupled effect", Tribology Int., 194, 109502. https://doi.org/10.1016/j.triboint.2024.109502.
  46. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  47. Truong, T.T., Nguyen-Thoi, T. and Lee, J. (2019), "Isogeometric size optimization of bi-directional functionally graded beams under static loads", Compos. Struct., 227, 111259. https://doi.org/10.1016/j.compstruct.2019.111259.
  48. Tutuncu, N. (2007), "Stresses in thick-walled FGM cylinders with exponentially-varying properties", Eng. Struct., 29(9), 2032-2035. https://doi.org/10.1016/j.engstruct.2006.12.003.
  49. Vinh, P.V. (2022), "Analysis of bi-directional functionally graded sandwich plates via higher-order shear deformation theory and finite element method", J. Sandw. Struct. Mater., 24(2), 860-899. https://doi.org/10.1177/10996362211025811.
  50. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2024), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virt. Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701.
  51. Xiang, J., Chen, J., Zheng, Y., Li, P., Huang, J. and Chen, Z. (2024), "Topological design for isotropic metamaterials using anisotropic material microstructures", Eng. Anal. Bound. Elem., 162, 28-44. https://doi.org/10.1016/j.enganabound.2024.01.025.
  52. Xiong, S., Zhou, C., Zhao, L., Zheng, X., Zhao, Y., Wang, B. and Li, R. (2022a), "Symplectic framework-based new analytic solutions for thermal buckling of temperature-dependent moderately thick functionally graded rectangular plates", Int. J. Struct. Stab. Dyn., 22(14), 2250154. https://doi.org/10.1142/S0219455422501541.
  53. Xiong, S., Zhou, C., Zheng, X., An, D., Xu, D., Hu, Z., Zhao, Y., Li, R. and Wang, B. (2022b), "New analytic thermal buckling solutions of non-Levy-type functionally graded rectangular plates by the symplectic superposition method", Acta Mechanica, 233, 2955-2968. https://doi.org/10.1007/s00707-022-03258-8.
  54. Xu, D., X, J., Chen L., He, Q., Wang, B. and Li, R. (2024), "Hamiltonian system-based analytic thermal buckling solutions of orthotropic rectangular plates", Int. J. Mech. Sci., 267, 108987. https://doi.org/10.1016/j.ijmecsci.2024.108987.
  55. Yan, H., Zikai, G., Meiling, T., Xingjun, G., Fan, L. and Jingting, S. (2024), "Study on the atomic removal behavior and damage formation mechanism of nano cutting copper-nickel alloy with diamond tool", Model. Simul. Mater. Sci. Eng., 2(3), 035011. https://doi.org/10.1088/1361-651X/ad2542.
  56. Yang, Y., Chen, B., Lin, W., Li, Y. and Dong, Y. (2021), "Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation", Aerosp. Sci. Technol., 110, 106495. https://doi.org/10.1016/j.ast.2021.106495.
  57. Zenkour, A.M. and Mashat, D.S. (2010), "Thermal buckling analysis of ceramic-metal functionally graded plates", Nat. Sci., 02(09), 968-978. https://doi.org/10.4236/ns.2010.29118.
  58. Zenkour, A.M., (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42, 5243-5258.
  59. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522.
  60. Zhang, W., Zhang, S., Wei, J. and Huang, Y. (2024), "Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study", Struct., 60, 105823. https://doi.org/10.1016/j.istruc.2023.105823.
  61. Zhou, J., Qi, Q., Liu, Q., Wang, Z. and Ren, J. (2024), "Determining residual stress profile induced by end milling from measured thin plate deformation", Thin Wall. Struct., 200, 111862. https://doi.org/10.1016/j.tws.2024.111862.
  62. Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "An analytical solution for bending and vibration responses of functionally graded beams with porosities", Wind Struct., 25(4), 329-342. https://doi.org/10.12989/was.2017.25.4.329.
  63. Zouatnia, N., Hadji, L., Atmane, H.A., Nebab, M., Madan, R., Bennai, R. and Dahmane, M. (2024), "Analysis of free vibration in bi-directional power law-based FG beams employing RSD theory", Couple. Syst. Mech., 13(4), 359-375. https://doi.org/10.12989/csm.2024.13.4.359.