DOI QR코드

DOI QR Code

Determining minimum non-connected concrete panel thickness and concrete type impact on seismic behavior of CSPSW

  • Received : 2024.07.30
  • Accepted : 2024.09.02
  • Published : 2024.09.25

Abstract

This study explores the use of advanced concrete types to improve the performance of composite steel shear walls (CSPSWs), particularly in delaying cracking and failure. A two-phase approach is implemented. Phase I utilizes non-linear finite element analysis and Gene Expression Programming to develop a novel method for determining the minimum concrete thickness required in CSPSWs. Phase II investigates the effect of concrete type, opening area, and location on the behavior of CSPSWs with openings. The results demonstrate that ultra-high performance concrete (UHPFRC) significantly reduces out-of-plane displacement and tensile cracking compared to normal concrete. Additionally, the study reveals a strong correlation between opening position and load-bearing capacity, with position L3 exhibiting the greatest reduction as opening size increases. Finally, UHPFRC's superior energy dissipation translatesto a higher equivalent viscous damping coefficient.

Keywords

References

  1. Arabzadeh, A. and Kazemi Nia Korrani, H.R. (2017), "Numerical and experimental investigation of composite steel shear wall with opening", Int. J. Steel Struct., 17, 1379-1389. https://doi.org/10.1007/s13296-017-1209-6.
  2. Arabzadeh, A., Soltani, M. and Ayazi, A. (2011), "Experimental investigation of composite shear walls under shear loadings", Thin Wall. Struct., 49(7), 842-854. https://doi.org/10.1016/j.tws.2011.02.009.
  3. Astaneh-Asl, A. (2002), Seismic Behavior and Design of Composite Steel Plate Shear Walls, Structural Steel Educational Council Moraga, CA, USA.
  4. Badarloo, B. and Jafari, F. (2018), "A numerical study on the effect of position and number of openings on the performance of composite steel shear walls", Build., 8(9), 121. https://doi.org/10.3390/buildings8090121.
  5. Bai, J., Zhang, J., Du, K. and Jin, S. (2020), "A simplified seismic design method for low-rise dual frame-steel plate shear wall structures", Steel Compos. Struct., 37(4), 447-462. https://doi.org/10.12989/scs.2020.37.4.447.
  6. Construction AIoS (2002), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction.
  7. Council AT (1992), Guidelines for Cyclic Seismic Testing of Components of Steel Structures, ATC-24.
  8. Dai, P., Yang, L., Wang, J., Ning, K. and Gang, Y. (2022), "Aspect ratios of code-designed steel plate shear walls for improved seismic performance", Steel Compos. Struct., 42(1), 107-121. https://doi.org/10.12989/scs.2022.42.1.107.
  9. Dan, D., Fabian, A. and Stoian, V. (2012), "Experimental study on composite steel-concrete shear walls with vertical steel encased profiles", Behaviour of Steel Structures in Seismic Areas, CRC Press.
  10. Du Beton FI (2013), fib Model Code for Concrete Structures 2010, Wiley-vch Verlag Gmbh.
  11. Ebadi Jamkhaneh, M., Ebrahimi, A.H. and Shokri Amiri, M. (2019), "Experimental and numerical investigation of steel moment resisting frame with U-shaped metallic yielding damper", Int. J. Steel Struct., 19, 806-818. https://doi.org/10.1007/s13296-018-0166-z.
  12. Ebadi-Jamkhaneh, M. and Ahmadi, M. (2021), "Investigation of connection type effects of composite steel plate shear wall with a circular opening to boundary elements", J. Struct. Constr. Eng., 8, 165-181. https://doi.org/10.22065/jsce.2020.223780.2110.
  13. Ebadi-Jamkhaneh, M. and Kontoni, D.P.N. (2022), "Numerical finite element investigation of thin steel shear walls retrofitted with CFRP layers under reversed cyclic loading", J. Build. Pathol. Rehab., 7(1), 62. https://doi.org/10.1007/s41024-022-00200-2.
  14. FEMA 356 FE (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, USA.
  15. Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Computing and Industry: Recent Applications, Springer.
  16. Ghalehnovi, M. and Meghdadian, M. (2023), "Proposition of design relations for composite steel plate shear walls containing an opening", Int. J. Adv. Scientif. Res. Innov., 6, 1-18. http://doi.org/10.2139/ssrn.4127770.
  17. Ghods, S., Kheyroddin, A., Nazeryan, M., Mirtaheri, S. M. and Gholhaki, M. (2016), "Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall", Steel Compos. Struct., 22(4), 915-935. https://doi.org/10.12989/scs.2016.22.4.915.
  18. Guo, L., Wang, Y. and Zhang, S. (2018), "Experimental study of rectangular multi-partition steel-concrete composite shear walls", Thin Wall. Struct., 130, 577-592. https://doi.org/10.1016/j.tws.2018.06.011.
  19. Habashi, H. and Alinia, M. (2010), "Characteristics of the wall-frame interaction in steel plate shear walls", J. Constr. Steel Res., 66(2), 150-158. https://doi.org/10.1016/j.jcsr.2009.09.004.
  20. Hashemi, S. and Ramezani, S. (2023), "Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls", Struct. Eng. Mech., 88(2), 129-140. https://doi.org/10.12989/sem.2023.88.2.129.
  21. Hashim, D.T., Hejazi, F. and Lei, V.Y. (2020), "Simplified constitutive and damage plasticity models for UHPFRC with different types of fiber", Int. J. Concrete Struct. Mater., 14, 45. https://doi.org/10.1186/s40069-020-00418-9.
  22. Huang, S.T., Huang, Y.S., He, A., Tang, X.L., Chen, Q.J., Liu, X. and Cai, J. (2018), "Experimental study on seismic behaviour of an innovative composite shear wall", J. Constr. Steel Res., 148, 165-179. https://doi.org/10.1016/j.jcsr.2018.05.003.
  23. Kisa, M.H., Yuksel, S.B. and Caglar, N. (2021), "Experimental study on hysteric behavior of composite shear walls with steel sheets", J. Build. Eng., 33, 101570. https://doi.org/10.1016/j.jobe.2020.101570.
  24. Li, X., Luo, H., Ren, X., Zhang, T., Li, L. and Shi, K. (2024), "Seismic behavior of double steel plates and concrete filled composite shear walls subject to in-plane cyclic load: Experimental investigation", Struct. Eng. Mech., 90(4), 345. https://doi.org/10.12989/sem.2024.90.4.345.
  25. Martinez-Rueda, J.E. and Elnashai, A.S. (1997), "Confined concrete model under cyclic load", Mater. Struct., 30, 139-147. https://doi.org/10.1007/BF02486385.
  26. Masoumi-Zahaneh, F., Hoseinzadeh, M., Rahimi, S. and Ebadi-Jamkhaneh, M. (2022), "Numerical investigation of bucklingrestrained steel plate shear wall under fire loading", Earthq. Struct., 23(1), 59. https://doi.org/10.12989/eas.2022.23.1.059.
  27. Meghdadaian, M. and Ghalehnovi, M. (2019), "Improving seismic performance of composite steel plate shear walls containing openings", J. Build. Eng., 21, 336-342. https://doi.org/10.1016/j.jobe.2018.11.001.
  28. Meghdadian, M., Gharaei-Moghaddam, N., Arabshahi, A., Mahdavi, N. and Ghalehnovi, M. (2020), "Proposition of an equivalent reduced thickness for composite steel plate shear walls containing an opening", J. Constr. Steel Res., 168, 105985. https://doi.org/10.1016/j.jcsr.2020.105985.
  29. Mohammad, R., Grondin, G. and Elwi, A. (2003), "Experimental and numerical investigation of steel plate shear wall", Structural Engineering Report No. 254. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
  30. Mou, X., Lv, H. and Li, X. (2023), "Seismic performance of corrugated steel plate composite shear walls with various configurations", Struct., 57, 105133. https://doi.org/10.1016/j.istruc.2023.105133.
  31. Nguyen, N.H. and Whittaker, A.S. (2017), "Numerical modelling of steel-plate concrete composite shear walls", Eng. Struct., 150, 1-11. https://doi.org/10.1016/j.engstruct.2017.06.030.
  32. Olabi, M.N., Caglar, N., Kisa, M.H. and Yuksel, S.B. (2021), "Numerical study on the response of composite shear walls with steel sheets under cyclic loading", J. Build. Eng., 34, 102069. https://doi.org/10.1016/j.jobe.2020.102069.
  33. Pang, R., Wang, W., Zhou, F. and Ding, S. (2023), "Experimental and analytical investigation on the compressive behavior of double-skin steel-concrete composite tube walls", J. Build. Eng., 73, 106681. https://doi.org/10.1016/j.jobe.2023.106681.
  34. Qi, Y., Gu, Q., Sun, G., Zhao, B. and Wang, H. (2019), "Concrete panel thickness demand for the design of composite steel plate shear wall", Struct. Des. Tall Spec. Build., 28(8), e1605. https://doi.org/10.1002/tal.1605.
  35. Rahnavard, R., Hassanipour, A. and Mounesi, A. (2016), "Numerical study on important parameters of composite steel-concrete shear walls", J. Constr. Steel Res., 121, 441-456. https://doi.org/10.1016/j.jcsr.2016.03.017.
  36. Rassouli, B., Shafaei, S., Ayazi, A. and Farahbod, F. (2016), "Experimental and numerical study on steel-concrete composite shear wall using light-weight concrete", J. Constr. Steel Res., 126, 117-128. https://doi.org/10.1016/j.jcsr.2016.07.016.
  37. Salimi, S.M., Rahimi, S., Hoseinzadeh, M., Kontoni, D.P.N. and Ebadi-Jamkhaneh, M. (2021), "Numerical 3D finite element assessment of bending moment-resisting frame equipped with semi-disconnected steel plate shear wall and yielding plate connection", Metal., 11(4), 604. https://doi.org/10.3390/met11040604.
  38. Shi, F., Wang, D. and Chen, L. (2023), "Cyclic elastoplastic constitutive model for stainless steels compatible with multiple strengths", J. Constr. Steel Res., 205, 107889. https://doi.org/10.1016/j.jcsr.2023.107889.
  39. Simulia DS (2016), Abaqus 2016 Documentation, Abaqus Theory Manual 4.
  40. Todea, V., Dan, D., Stoian, V., Florut, S.C. and Popescu, D.A. (2021), "Seismic behaviour of composite steel-concrete shear walls with central openings", ce/papers, 4(2-4), 1844-1848. https://doi.org/10.1002/cepa.1494.
  41. Verki, A.M., Preciado, A. and Motlagh, P.A. (2023), "Seismic performance of moment resisting steel frames retrofitted with coupled steel plate shear walls with different link beams", Steel Compos. Struct., 46(5), 591-609. https://doi.org/10.12989/scs.2023.46.5.591.
  42. Wang, H., Gu, Q. and Qi, Y. (2022), "Thickness demand for concrete panel in design of C-PSW/CE under cyclic loading", J. Build. Eng., 48, 104011. https://doi.org/10.1016/j.jobe.2022.104011.
  43. Wang, W., Ren, Y., Lu, Z., Song, J., Han, B. and Zhou, Y. (2019), "Experimental study of the hysteretic behaviour of corrugated steel plate shear walls and steel plate reinforced concrete composite shear walls", J. Constr. Steel Res., 160, 136-152. https://doi.org/10.1016/j.jcsr.2019.05.019.
  44. Wang, W., Wang, Y. and Lu, Z. (2018), "Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall", Eng. Struct., 160, 281-292. https://doi.org/10.1016/j.engstruct.2018.01.050.
  45. Xu, Z., Chen, Z., Dong, X. and Zuo, Y. (2023), "Experimental study on seismic behavior of lightweight concrete-filled cold-formed steel shear walls strengthened using horizontal reinforcement", J. Earthq. Eng., 27, 4126-4160. https://doi.org/10.1080/13632469.2022.2162630.
  46. Yang, X., Xu, L. and Pan, J. (2023), "Experimental investigation on the seismic behavior of composite steel plate shear wall restrained by ECC panels", Eng. Struct., 297,116946. https://doi.org/10.1016/j.engstruct.2023.116946.
  47. Yang, Y., Mu, Z. and Zhu, B. (2022), "Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model", Struct. Eng. Mech., 84(1), 113-127. https://doi.org/10.12989/sem.2022.84.1.113.
  48. Zhang, X., Qin, Y. and Chen, Z. (2016), "Experimental seismic behavior of innovative composite shear walls", J. Constr. Steel Res., 116, 218-232. https://doi.org/10.1016/j.jcsr.2015.09.015.
  49. Zhao, Q. and Astaneh-Asl, A. (2004), "Cyclic behavior of traditional and innovative composite shear walls", J. Struct. Eng., 130, 271-284. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(271). 
  50. Zhou, Y., Lu, X. and Dong, Y. (2010), "Seismic behaviour of composite shear walls with multi-embedded steel sections. Part I: Experiment", Struct. Des. Tall Spec. Build., 19(6), 618-636. https://doi.org/10.1002/tal.597.