과제정보
This research work was funded by Institutional Fund Projects under grant no. (IFPIP_ 1578-135-1443). Therefore, the authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia.
참고문헌
- Abed Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
- Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B-Eng., 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
- Anh, V.T.T., Huong, V.T., Nguyen, P.D. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells", Mech. Compos. Mater., 57(5), 609-622. https://doi.org/10.1007/s11029-021-09983-w.
- Arefi, M. and Meskini, M. (2019), "Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets", Struct. Eng. Mech., 71(5), 459-467. https://doi.org/10.12989/sem.2019.71.5.459.
- Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells", Struct. Eng. Mech., 75(6), 657-674. https://doi.org/10.12989/sem.2020.75.6.657.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. https://doi.org/10.12989/anr.2022.12.6.593.
- Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
- Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
- Chan, D.Q., Thanh, N.V., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837,
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
- Cho, J.R. (2023), "Free vibration analysis of functionally graded porous cylindrical panels reinforced with graphene platelets", Nanomater., 13(9), 1441. https://doi.org/10.3390/nano13091441.
- Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermo-mechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", J. Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Dat, N.D., Quan, T.Q. and Duc, N.D. (2021), "Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers", Eur. J. Mech. A-Solid., 90, 104351. https://doi.org/10.1016/j.euromechsol.2021.104351.
- Dat, N.D., Thanh, N.V., Anh, V.M. and Duc, N.D. (2022), "Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer", Mech. Adv. Mater. Struct., 29(10), 1431-1448. https://doi.org/10.1080/15376494.2020.1822476.
- Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B-Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
- Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127.
- Ding, H.X., Liu, H.B., She, G.L. and Wu, F. (2023), "Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory", Comput. Concrete, 32(2), 207-215. https://doi.org/10.12989/cac.2023.32.2.207.
- Duc, N.D., Bich, D.H. and Cong, P.H. (2016), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Therm. Stress., 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194.
- Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2023), "The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method", Comput. Concrete, 32(5), 439-454. https://doi.org/10.12989/cac.2023.32.5.439.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hosseini-Hashemi, S.H., Fadaee, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.
- Hou, S., Wu, S., Luo, J., Nasihatgozar, M. and Behshad, A. (2022), "Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory", Steel Compos. Struct., 45(4), 555-562. https://doi.org/10.12989/scs.2022.45.4.555.
- Hu, X. and Fu, T. (2023), "Free vibration analysis of functionally graded plates with different porosity distributions and grading patterns", J. Mech. Sci. Technol., 37(11), 5725-5738. https://doi.org/10.1007/s12206-023-1012-6.
- Huang, Y. and Wu, S. (2022), "Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete", Adv. Nano Res., 12(5), 515-527. https://doi.org/10.12989/anr.2022.12.5.515.
- Jrad, H., Mars, J., Wali, M. and Dammak, F. (2019), "Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells", Eng. Comput., 35(3), 833-847. https://doi.org/10.1007/s00366-018-0633-3.
- Jung, W.Y., Han, S.C. and Park, W.T. (2016), "Four-variable refined plate theory for forced-vibration analysis of sigmoid functionally graded plates on elastic foundation", Int. J. Mech. Sci., 111, 73-87. https://doi.org/10.1016/j.ijmecsci.2016.03.001.
- Kamarian, S. and Song, J.I. (2023), "Thermal buckling of rectangular sandwich plates with advanced hybrid SMA/CNT/graphite/epoxy composite face sheets", Adv. Nano Res., 14(3), 261-271. https://doi.org/10.12989/anr.2023.14.3.261.
- Kang, R., Xin, F., Shen, C. and Lu, T.J. (2022), "3D free vibration analysis of functionally graded plates with arbitrary boundary conditions in thermal environment", Adv. Eng. Mater., 24(5), 2100636. https://doi.org/10.1002/adem.202100636.
- Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667.
- Khatri, K.L. and Markad, K. (2023), "Stochastic fracture behavior analysis of infinite plates with a separate crack and a hole under tensile loading", Comput. Concrete, 32(1), 99-117. https://doi.org/10.12989/cac.2023.32.1.099.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
- Kim, D.Y., Sim, C.H., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2023), "Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure", Struct. Eng. Mech., 87(5), 419-429. https://doi.org/10.12989/sem.2023.87.5.419.
- Kiran, M.C., Kattimani, S.C. and Vinyas, M. (2018), "Porosity influence on structural behaviour of skew functionally graded magnetoelectro- elastic plate", Compos. Struct., 191, 36-77. https://doi.org/10.1016/j.compstruct.2018.02.023.
- Koizumi, M. (1993), "The concept of fgm. functionally gradient materials", J. Function. Gradient Mater., 34, 3-10.
- Kumar, R. and Jana, P. (2024), "Free vibration analysis of uniform thickness and stepped P-FGM plates: A FSDT-based dynamic stiffness approach", Mech. Bas. Des. Struct. Mach., 52(1), 447-476. https://doi.org/10.1080/15397734.2022.2117192.
- Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2020), "Vibration characteristics of porous FGM plates with variable thickness resting on Pasternak's foundation", Eur. J. Mech. A-Solid., 85, 104124. https://doi.org/10.1016/j.euromechsol.2020.104124.
- Lieu, Q.X., Lee, S., Kang, J. and Lee, J. (2018), "Bending and free vibration analyses of in-plane bidirectional functionally graded plates with variable thickness using Isogeometric analysis", Compos. Struct., 192, 434-451. https://doi.org/10.1016/j.compstruct.2018.03.021.
- Madenci, E. and O zutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151.
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
- Mehar, K., Panda, S.K., Yuvarajan, D. and Gautam, C. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
- Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mohamed, N., Mohamed, S.A., Abdelrhmaan, A.A. and Eltaher, M.A. (2023), "Nonlinear stability of bio-inspired composite beams with higher order shear theory", Steel Compos. Struct., 46(6), 759-772. https://doi.org/10.12989/scs.2023.46.6.759.
- Nguyen, H.N., Hong, T.T., Vinh, P.V., Quang, N.D. and Thom, D.V. (2019), ''A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates", Mater., 12(15), 2385. https://doi.org/10.3390/ma12152385.
- Nguyen, K.D., Thanh, C.L., Nguyen, H.X. and Wahab, M.A. (2023), "A hybrid phase-field isogeometric analysis to crack propagation in porous functionally graded structures", Eng. Comput., 39, 129-149. https://doi.org/10.1007/s00366-021-01518-0.
- Pasternak, P.L. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gos. Izd. Lit. po Stroit. i Arkhitekture.
- Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T. and Nguyen, P.C. (2021), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Stud. Therm. Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
- Qian, L.F., Batra, R.C. and Chen, L.M. (2003), "Free and forced vibrations of thick rectangular plates by using higher-order shear and normal deformable plate theory and meshless petrovgalerkin (MLPG) method", Comput. Model. Eng. Sci., 4(5), 471-485.
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
- Quan, T.Q., Ha, D.T.T. and Duc, N.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Roque, C.M.C., Ferreira, A.J.M. and Jorge, R.M.N. (2007), "A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory", J. Sound Vib., 300(3-5), 1048-1070. https://doi.org/10.1016/j.jsv.2006.08.037.
- Sahoo, S., Parida, S.P. and Jena, P.C. (2023), "Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass", Struct. Eng. Mech., 87(6), 529-540. https://doi.org/10.12989/sem.2023.87.6.529.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Tayebi, M.S., Salami, S.J. and Tavakolian, M. (2023), "Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM", Struct. Eng. Mech., 85(4), 445-459. https://doi.org/10.12989/sem.2023.85.4.445.
- Teng, M.W. and Wang, Y.Q. (2021), "Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets", Thin Wall. Struct., 164, 107799. https://doi.org/10.1016/j.tws.2021.107799.
- Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
- Thanh, C.L., Nguyen, K.D., Minh, H.L., Thanh, S.T., Phuong, P.V. and Wahab, M.A. (2022b), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B-Condens. Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2022a), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Tran, V.T., Nguyen, T.K., Nguyen, H.X. and Wahab, M.A. (2023), "Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm", Thin Wall. Struct., 182, 110267. https://doi.org/10.1016/j.tws.2022.110267.
- Turan, F. (2023), "Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory", Steel Compos. Struct., 48(2), 145-161. https://doi.org/10.12989/scs.2023.48.2.145.
- Turini, T.T. and Calenzani, A.F.G. (2022), "Analytical study of composite steel-concrete beams with external prestressing", Struct. Eng. Mech., 82(5), 595-609. https://doi.org/10.12989/sem.2022.82.5.595.
- Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P. (2013), "NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wang, X., Guo, X., Babaei, M., Fili, R. and Farahani, H. (2023b), "Natural frequency analysis of joined conical-cylindrical-conical shells made of graphene platelet reinforced composite resting on Winkler elastic foundation", Adv. Nano Res., 15(4), 367-384. https://doi.org/10.12989/anr.2023.15.4.367.
- Wang, Y., Wu, H., Yang, F. and Wang, Q. (2021), "An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid", Appl. Math. Mech., 42(2), 291-308. https://doi.org/10.1007/s10483-021-2701-5.
- Wang, Y., Ye, C. and Zu, J. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
- Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004
- Wang, Y.Q. and Zu, J.W. (2017), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.2017.08.012.
- Wang, Y.Q. and Zu, J.W. (2017), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/105014.10.1088/1361-665X/aa8429.
- Wang, Y.Q., Xing, W.C., Wang, J. and Chai, Q. (2023a), "Theoretical and experimental studies on vibration characteristics of bolted joint multi-plate structures", Int. J. Mech. Sci., 252, 108348. https://doi.org/10.1016/j.ijmecsci.2023.108348.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
- Winkler, E. (1867), Die Lehre von der Elasticitat und Festigkeit mit besonderer Rucksicht auf ihre Anwendung in der, Technik.
- Wu, X. (2023), "Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets", Adv. Nano Res., 15(2), 141-153. https://doi.org/10.12989/anr.2023.15.2.141.
- Xia, J., Jafari, G.S. and Ghoroughi, F. (2024), "New method environment for art design of nanocomposite brick facade of the building", Steel Compos. Struct., 51(5), 499-507. https://doi.org/10.12989/scs.2024.51.5.499.
- Xie, K., Wang, Y.W., Niu, H.P. and Chen, H. (2020), "Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method", Compos. Struct., 246, 112367. https://doi.org/10.1016/j.compstruct.2020.112367.
- Xu, G. and Ming, F. (2023), "On dynamic response and economic of sinusoidal porous laminated nanocomposite beams using numerical method", Steel Compos. Struct., 49(3), 349-359. https://doi.org/10.12989/scs.2023.49.3.349.
- Xu, H. and Wang, Y.Q. (2023), "Nonlinear free vibration of spinning pre-twisted functionally graded material plates in thermal environment", Int. J. Struct. Stab. Dyn., 2450131. https://doi.org/10.1142/S0219455424501311.
- Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
- Yin, S., Yu, T. and Liu, P. (2013), "Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface", Adv. Mech. Eng., 5, 634584. https://doi.org/10.1155/2013/634584.
- Yin, Z., Gao, H. and Lin, G. (2021), "Bending and free vibration analysis of functionally graded plates made of porous materials according to a novel the semi-analytical method", Eng. Anal. Bound. Elem., 133, 185-199. https://doi.org/10.1016/j.enganabound.2021.09.006.
- Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2023), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 39(2), 1127-1141. https://doi.org/10.1007/s00366-021-01498-1.
- Zghal, S., Trabelsi, S., Frikha, A. and Dammak, F. (2021), "Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element", J. Therm. Stress., 44(3), 315-341. https://doi.org/10.1080/01495739.2021.1871577.