DOI QR코드

DOI QR Code

Dynamic response of imperfect functionally graded plates: Impact of graded patterns and viscoelastic foundation

  • Hafida Driz (Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Amina Attia (Department of Civil Engineering and Public Works, Engineering and Sustainable Development Laboratory, Faculty of Science and Technology, University of Ain Temouchent) ;
  • Abdelmoumen Anis Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Farouk Yahia Addou (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Mohamed Bourada (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Abdeldjebbar Tounsi (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Mohammed Balubaid (Department of Industrial Engineering, King Abdulaziz University) ;
  • S.R. Mahmoud (GRC Department, Applied College, King Abdulaziz University)
  • 투고 : 2024.06.28
  • 심사 : 2024.08.23
  • 발행 : 2024.09.25

초록

This study presents a methodical investigation into improving structural designs through the analytical examination of the dynamic behavior of functionally graded plates (FGPs) resting on viscoelastic foundations. By employing a four variable first-order shear deformation theory, the study computes non-dimensional frequencies for a variety of porous FGPs with diverse graded patterns and porosity distributions. Different gradient patterns of the plates are considered, and three distinct functions-sigmoid (S-FGM), exponential (E-FGM), and power-law (P-FGM)-are utilized to assess material performance in specific directions. The equations of motion are derived and solved using both Navier's method and Hamilton's principle. Analytical solutions for vibration frequency are provided to validate the proposed methodology against existing literature. Furthermore, a comprehensive parametric analysis is conducted, taking into account various factors such as ceramic material, porosity distribution, gradient index, length-to-thickness ratio, gradient pattern, and damping coefficient. The findings suggest that enhancing the damping coefficient of the viscoelastic foundation can significantly improve the free-vibrational response of functionally graded material plates.

키워드

과제정보

This research work was funded by Institutional Fund Projects under grant no. (IFPIP_ 1578-135-1443). Therefore, the authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia.

참고문헌

  1. Abed Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
  2. Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B-Eng., 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
  5. Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219.
  6. Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
  7. Anh, V.T.T., Huong, V.T., Nguyen, P.D. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous graphene platelet-reinforced composite sandwich shallow spherical shells", Mech. Compos. Mater., 57(5), 609-622. https://doi.org/10.1007/s11029-021-09983-w.
  8. Arefi, M. and Meskini, M. (2019), "Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets", Struct. Eng. Mech., 71(5), 459-467. https://doi.org/10.12989/sem.2019.71.5.459.
  9. Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells", Struct. Eng. Mech., 75(6), 657-674. https://doi.org/10.12989/sem.2020.75.6.657.
  10. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  11. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. https://doi.org/10.12989/anr.2022.12.6.593.
  12. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
  13. Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
  14. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
  15. Chan, D.Q., Thanh, N.V., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837,
  16. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  17. Cho, J.R. (2023), "Free vibration analysis of functionally graded porous cylindrical panels reinforced with graphene platelets", Nanomater., 13(9), 1441. https://doi.org/10.3390/nano13091441.
  18. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermo-mechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", J. Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  19. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
  20. Dat, N.D., Quan, T.Q. and Duc, N.D. (2021), "Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers", Eur. J. Mech. A-Solid., 90, 104351. https://doi.org/10.1016/j.euromechsol.2021.104351.
  21. Dat, N.D., Thanh, N.V., Anh, V.M. and Duc, N.D. (2022), "Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer", Mech. Adv. Mater. Struct., 29(10), 1431-1448. https://doi.org/10.1080/15376494.2020.1822476.
  22. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B-Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  23. Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127.
  24. Ding, H.X., Liu, H.B., She, G.L. and Wu, F. (2023), "Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory", Comput. Concrete, 32(2), 207-215. https://doi.org/10.12989/cac.2023.32.2.207.
  25. Duc, N.D., Bich, D.H. and Cong, P.H. (2016), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Therm. Stress., 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194.
  26. Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.
  27. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2023), "The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method", Comput. Concrete, 32(5), 439-454. https://doi.org/10.12989/cac.2023.32.5.439.
  28. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  29. Hosseini-Hashemi, S.H., Fadaee, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.
  30. Hou, S., Wu, S., Luo, J., Nasihatgozar, M. and Behshad, A. (2022), "Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory", Steel Compos. Struct., 45(4), 555-562. https://doi.org/10.12989/scs.2022.45.4.555.
  31. Hu, X. and Fu, T. (2023), "Free vibration analysis of functionally graded plates with different porosity distributions and grading patterns", J. Mech. Sci. Technol., 37(11), 5725-5738. https://doi.org/10.1007/s12206-023-1012-6.
  32. Huang, Y. and Wu, S. (2022), "Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete", Adv. Nano Res., 12(5), 515-527. https://doi.org/10.12989/anr.2022.12.5.515.
  33. Jrad, H., Mars, J., Wali, M. and Dammak, F. (2019), "Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells", Eng. Comput., 35(3), 833-847. https://doi.org/10.1007/s00366-018-0633-3.
  34. Jung, W.Y., Han, S.C. and Park, W.T. (2016), "Four-variable refined plate theory for forced-vibration analysis of sigmoid functionally graded plates on elastic foundation", Int. J. Mech. Sci., 111, 73-87. https://doi.org/10.1016/j.ijmecsci.2016.03.001.
  35. Kamarian, S. and Song, J.I. (2023), "Thermal buckling of rectangular sandwich plates with advanced hybrid SMA/CNT/graphite/epoxy composite face sheets", Adv. Nano Res., 14(3), 261-271. https://doi.org/10.12989/anr.2023.14.3.261.
  36. Kang, R., Xin, F., Shen, C. and Lu, T.J. (2022), "3D free vibration analysis of functionally graded plates with arbitrary boundary conditions in thermal environment", Adv. Eng. Mater., 24(5), 2100636. https://doi.org/10.1002/adem.202100636.
  37. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667.
  38. Khatri, K.L. and Markad, K. (2023), "Stochastic fracture behavior analysis of infinite plates with a separate crack and a hole under tensile loading", Comput. Concrete, 32(1), 99-117. https://doi.org/10.12989/cac.2023.32.1.099.
  39. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687.
  40. Kim, D.Y., Sim, C.H., Park, J.S., Yoo, J.T., Yoon, Y.H. and Lee, K. (2023), "Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure", Struct. Eng. Mech., 87(5), 419-429. https://doi.org/10.12989/sem.2023.87.5.419.
  41. Kiran, M.C., Kattimani, S.C. and Vinyas, M. (2018), "Porosity influence on structural behaviour of skew functionally graded magnetoelectro- elastic plate", Compos. Struct., 191, 36-77. https://doi.org/10.1016/j.compstruct.2018.02.023.
  42. Koizumi, M. (1993), "The concept of fgm. functionally gradient materials", J. Function. Gradient Mater., 34, 3-10.
  43. Kumar, R. and Jana, P. (2024), "Free vibration analysis of uniform thickness and stepped P-FGM plates: A FSDT-based dynamic stiffness approach", Mech. Bas. Des. Struct. Mach., 52(1), 447-476. https://doi.org/10.1080/15397734.2022.2117192.
  44. Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2020), "Vibration characteristics of porous FGM plates with variable thickness resting on Pasternak's foundation", Eur. J. Mech. A-Solid., 85, 104124. https://doi.org/10.1016/j.euromechsol.2020.104124.
  45. Lieu, Q.X., Lee, S., Kang, J. and Lee, J. (2018), "Bending and free vibration analyses of in-plane bidirectional functionally graded plates with variable thickness using Isogeometric analysis", Compos. Struct., 192, 434-451. https://doi.org/10.1016/j.compstruct.2018.03.021.
  46. Madenci, E. and O zutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  47. Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151.
  48. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
  49. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  50. Mehar, K., Panda, S.K., Yuvarajan, D. and Gautam, C. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  51. Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  52. Mohamed, N., Mohamed, S.A., Abdelrhmaan, A.A. and Eltaher, M.A. (2023), "Nonlinear stability of bio-inspired composite beams with higher order shear theory", Steel Compos. Struct., 46(6), 759-772. https://doi.org/10.12989/scs.2023.46.6.759.
  53. Nguyen, H.N., Hong, T.T., Vinh, P.V., Quang, N.D. and Thom, D.V. (2019), ''A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates", Mater., 12(15), 2385. https://doi.org/10.3390/ma12152385.
  54. Nguyen, K.D., Thanh, C.L., Nguyen, H.X. and Wahab, M.A. (2023), "A hybrid phase-field isogeometric analysis to crack propagation in porous functionally graded structures", Eng. Comput., 39, 129-149. https://doi.org/10.1007/s00366-021-01518-0.
  55. Pasternak, P.L. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gos. Izd. Lit. po Stroit. i Arkhitekture.
  56. Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T. and Nguyen, P.C. (2021), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Stud. Therm. Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
  57. Qian, L.F., Batra, R.C. and Chen, L.M. (2003), "Free and forced vibrations of thick rectangular plates by using higher-order shear and normal deformable plate theory and meshless petrovgalerkin (MLPG) method", Comput. Model. Eng. Sci., 4(5), 471-485. 
  58. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
  59. Quan, T.Q., Ha, D.T.T. and Duc, N.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
  60. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  61. Roque, C.M.C., Ferreira, A.J.M. and Jorge, R.M.N. (2007), "A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory", J. Sound Vib., 300(3-5), 1048-1070. https://doi.org/10.1016/j.jsv.2006.08.037.
  62. Sahoo, S., Parida, S.P. and Jena, P.C. (2023), "Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass", Struct. Eng. Mech., 87(6), 529-540. https://doi.org/10.12989/sem.2023.87.6.529.
  63. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
  64. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  65. Tayebi, M.S., Salami, S.J. and Tavakolian, M. (2023), "Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM", Struct. Eng. Mech., 85(4), 445-459. https://doi.org/10.12989/sem.2023.85.4.445.
  66. Teng, M.W. and Wang, Y.Q. (2021), "Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets", Thin Wall. Struct., 164, 107799. https://doi.org/10.1016/j.tws.2021.107799.
  67. Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
  68. Thanh, C.L., Nguyen, K.D., Minh, H.L., Thanh, S.T., Phuong, P.V. and Wahab, M.A. (2022b), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B-Condens. Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
  69. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2022a), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0.
  70. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  71. Tran, V.T., Nguyen, T.K., Nguyen, H.X. and Wahab, M.A. (2023), "Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm", Thin Wall. Struct., 182, 110267. https://doi.org/10.1016/j.tws.2022.110267.
  72. Turan, F. (2023), "Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory", Steel Compos. Struct., 48(2), 145-161. https://doi.org/10.12989/scs.2023.48.2.145.
  73. Turini, T.T. and Calenzani, A.F.G. (2022), "Analytical study of composite steel-concrete beams with external prestressing", Struct. Eng. Mech., 82(5), 595-609. https://doi.org/10.12989/sem.2022.82.5.595.
  74. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P. (2013), "NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008.
  75. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  76. Wang, X., Guo, X., Babaei, M., Fili, R. and Farahani, H. (2023b), "Natural frequency analysis of joined conical-cylindrical-conical shells made of graphene platelet reinforced composite resting on Winkler elastic foundation", Adv. Nano Res., 15(4), 367-384. https://doi.org/10.12989/anr.2023.15.4.367.
  77. Wang, Y., Wu, H., Yang, F. and Wang, Q. (2021), "An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid", Appl. Math. Mech., 42(2), 291-308. https://doi.org/10.1007/s10483-021-2701-5.
  78. Wang, Y., Ye, C. and Zu, J. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
  79. Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004
  80. Wang, Y.Q. and Zu, J.W. (2017), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.2017.08.012.
  81. Wang, Y.Q. and Zu, J.W. (2017), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/105014.10.1088/1361-665X/aa8429.
  82. Wang, Y.Q., Xing, W.C., Wang, J. and Chai, Q. (2023a), "Theoretical and experimental studies on vibration characteristics of bolted joint multi-plate structures", Int. J. Mech. Sci., 252, 108348. https://doi.org/10.1016/j.ijmecsci.2023.108348.
  83. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  84. Winkler, E. (1867), Die Lehre von der Elasticitat und Festigkeit mit besonderer Rucksicht auf ihre Anwendung in der, Technik.
  85. Wu, X. (2023), "Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets", Adv. Nano Res., 15(2), 141-153. https://doi.org/10.12989/anr.2023.15.2.141.
  86. Xia, J., Jafari, G.S. and Ghoroughi, F. (2024), "New method environment for art design of nanocomposite brick facade of the building", Steel Compos. Struct., 51(5), 499-507. https://doi.org/10.12989/scs.2024.51.5.499.
  87. Xie, K., Wang, Y.W., Niu, H.P. and Chen, H. (2020), "Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method", Compos. Struct., 246, 112367. https://doi.org/10.1016/j.compstruct.2020.112367.
  88. Xu, G. and Ming, F. (2023), "On dynamic response and economic of sinusoidal porous laminated nanocomposite beams using numerical method", Steel Compos. Struct., 49(3), 349-359. https://doi.org/10.12989/scs.2023.49.3.349. 
  89. Xu, H. and Wang, Y.Q. (2023), "Nonlinear free vibration of spinning pre-twisted functionally graded material plates in thermal environment", Int. J. Struct. Stab. Dyn., 2450131. https://doi.org/10.1142/S0219455424501311.
  90. Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
  91. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
  92. Yin, S., Yu, T. and Liu, P. (2013), "Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface", Adv. Mech. Eng., 5, 634584. https://doi.org/10.1155/2013/634584.
  93. Yin, Z., Gao, H. and Lin, G. (2021), "Bending and free vibration analysis of functionally graded plates made of porous materials according to a novel the semi-analytical method", Eng. Anal. Bound. Elem., 133, 185-199. https://doi.org/10.1016/j.enganabound.2021.09.006.
  94. Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2023), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 39(2), 1127-1141. https://doi.org/10.1007/s00366-021-01498-1.
  95. Zghal, S., Trabelsi, S., Frikha, A. and Dammak, F. (2021), "Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element", J. Therm. Stress., 44(3), 315-341. https://doi.org/10.1080/01495739.2021.1871577.