DOI QR코드

DOI QR Code

Underground cavity remediation using membrane grouting method

  • Seung-Hyun Kim (Department of Civil Engineering, Konkuk University) ;
  • Young-Hoon Jung (Department of Road Management, Korea Expressway Corporation) ;
  • Jong-Ho Shin (Department of Civil Engineering, Konkuk University)
  • Received : 2023.11.23
  • Accepted : 2024.02.20
  • Published : 2024.09.10

Abstract

Ground collapse may occur around the tunnel when the cavity caused by groundwater runoff cannot resist the surcharge load. Any cavities or subsidence must be managed to avoid dangerous situations by stabilizing the ground through appropriate remedial measures. Trench and trenchless grouting methods can generally be used for the cavity restoration. The trench method is difficult to properly control the injection range and may cause environmental problems due to grout leakage and damages to the adjacent structures due to grouting pressure. In this study, Membrane-grouting method (MGM) is proposed, which, can be an appropriate trenchless grouting method that fills the void tightly and effectively controls the injection range. This method can be an alternative to eliminating the influence of adjacent structures and environmental pollution by inserting a membrane into the cavity and filling the membrane with grout. The membrane blocks the outflow of grout. In addition, it is easy to control the injection pressure to avoid heaving failure. This paper investigates the principle and application of the MGM using a theoretical method, model test and numerical analysis.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1A2C1003139).

References

  1. El-Kelesh, A.M., Mossaad, M.E. and Basha, I.M. (2001), "Model of compaction grouting", J. Geotech. Geoenviron. Eng., 127(11), 955-964. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(955).
  2. Fraldi, M. and Guarracino, F. (2009), "Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek- Brown failure criterion", Int. J. Rock Mech. Min. Sci., 46(4), 665-673. https://doi.org/10.1016/j.ijrmms.2008.09.014.
  3. Fraldi, M. and Guarracino, F. (2010), "Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections", Int. J. Solids Struct., 47(2), 216-223. https://doi.org/10.1016/j.ijsolstr.2009.09.028.
  4. Guarino, P.M. and Nisio, S. (2012), "Anthropogenic sinkholes in the territory of the city of Naples (Southern Italy)", Physics and Chemistry of the Earth, Parts A/B/C., 49, 92-102. https://doi.org/10.1016/j.pce.2011.10.023
  5. Guo, S., Shao, Y., Zhang, T., Zhu, D.Z. and Zhang, Y. (2013), "Physical modeling on sand erosion around defective sewer pipes under the influence of groundwater", J. Hydraul. Eng., 139(12), 1247-1257. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000785.
  6. Kim, H.J. (2018), "Cavity Generation Mechanism adjacent to Underground Structures", Ph.D. thesis, Konkuk University.
  7. Kong, S.M., Kim, D.M., Lee, D.Y., Jung, H.S. and Lee, Y.J. (2018), "Field and laboratory assessment of ground subsidence induced by underground cavity under the sewer pipe", Geomech. Eng., 16(3), 285-293. https://doi.org/10.12989/gae.2018.16.4.399.
  8. Kuwano, R., Horii, T., Yamauchi, K. and Kohashi, H. (2010), "Formation of subsurface cavity and loosening due to defective old sewer pipe", Jpn. Geotech. J., 5(2), 349-361.
  9. Laursen, Tod. A. (2002), "Computational contact and impact mechanics: Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis", Germany, Berlin, Springer.
  10. Lin, P., Li, S.C., Xu, Z.H., Huang, X., Pang, D.D., Wang, X.T. and Wang, J. (2018), "Location determining method of critical sliding surface of fillings in a karst cave of tunnel", Geomech. Eng., 16(4), 415-421. https://doi.org/10.12989/gae.2018.16.4.415.
  11. Liu, J., Zhang, L., Xue, H., You, T. and Wu, Y. (2022), "Technique of grouting in silty-fine sand with abundant water: Practice in Beijing", Geomech. Eng., 29(4), 463-470. https://doi.org/10.12989/gae.2022.29.4.463.
  12. Martinotti, M.E., Pisano, L., Marchesini, I., Rossi, M., Peruccacci, S., Brunetti, M.T. and Guzzetti, F. (2017), "Landslides, floods, and sinkholes in a karst environment: the 1-6 September 2014 Gargano event, southern Italy", Nat. Hazards Earth Syst. Sci., 17(3), 467-480. https://doi.org/10.5194/nhess-17-467-2017.
  13. Mukunoki, T., Kumano, N., Otani, J. and Kuwano, R. (2009), "Visualization of three-dimensional failure in sand due to water inflow and soil drainage from defective underground pipe using X-ray CT", Soil Mech. Found. Eng., 49(6), 959-968. https://doi.org/10.3208/sandf.49.959.
  14. Mukunoki, T., Kumano, N. and Otani, J. (2012), "Image analysis of soil failure on defective underground pipe due to cyclic water supply and drainage using X-ray CT", Front. Struct. Civ. Eng., 6(2), 85-100. https://doi.org/10.1007/s11709-012-0159-5.
  15. Nam, G.G. and Lee, T.G. (2022), "Durability and environmental impact of eco-friendly polymer grouting", Magazine of RCR, 17(1), 28-31. https://doi.org/10.14190/MRCR.2022.17.1.028.
  16. Rogers, C.J. (1986), "Sewer deterioration Studies: The background to the structural assessment procedure in the sewerage rehabilitation Manual", London, Water Research Centre.
  17. Thiyyakkandi, S. and Lukose. A. (2022), "Analysis of cavity expansion and contraction in unsaturated residual soils", Geomech. Eng., 28(4), 405-419. https://doi.org/10.12989/gae.2022.28.4.405
  18. Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found Div., 98(3), 265-290. https://doi.org/10.1061/JSFEAQ.0001740.
  19. Yang, X.L. and Huang, F. (2011), "Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion", Tunn. Undergr. Sp. Tech., 26(6), 686-691. https://doi.org/10.1016/j.tust.2011.05.008.
  20. Zou, J.F. and Xia, M.Y. (2017), "A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress", Geomech. Eng., 12(3), 347-360. https://doi.org/10.12989/gae.2017.12.3.347.