DOI QR코드

DOI QR Code

Relocation of plastic hinge in exterior beam-column joints using inclined bars

  • P.Asha (Meenakshi Sundararajan Engineering College) ;
  • R.Sundararajan (Government College of Technology) ;
  • K.Kumar (Government College of Technology)
  • Received : 2021.08.27
  • Accepted : 2024.08.01
  • Published : 2024.10.25

Abstract

Recent earthquakes have demonstrated that even when the beams and columns in a reinforced concrete frame remain intact, the integrity of the whole structure is undermined if the joint where these members connect fails. A good seismic performance of reinforced concrete frames depends on their ability to absorb seismic energy through inelastic deformations and to avoid a sudden development of collapse mechanism in event of a strong earthquake shaking. The primary objective of this investigation is to move the plastic hinge away from the beam-column joint region and hence reducing the damage to the joint region. In this research, the seismic performance of exterior beam-column joints with four types of confinement in joint region and inclined bars from column to beam is investigated experimentally. Control specimens without inclined bars and four types of confinement Square Hoop, Square Spiral, Circular Hoop and Circular Spiral were tested along with inclined bars were tested. Seismic performance was determined via load-deflection response, ductility, stiffness, energy dissipation, strain of beam reinforcement and crack pattern. Out of the four specimens with inclined bars, seismic performance of joint with Square Spiral confinement gave the best performance in terms of all parameters.

Keywords

Acknowledgement

The authors are thankful to Mr. M.Rajendran, Ms. K.Kousalya and Ms. Hema Vyshnavi (former ME students) for their assistance in completing this research work. On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Abdel-Fattah, B. and Wight, J.K. (1987), "Study of moving beam plastic hinging zones for earthquake-resistant design of R/C buildings", ACI Struct. J., 84(1), 31-39. https://doi.org/10.14359/2767.
  2. Adibi, M., Shafaei, J. and Aliakbari, F. (2020), "Experimental evaluation of external beam-column joints reinforced by deformed and plain bar", Earthq. Struct., 18(1), 113-127. https://doi.org/10.12989/eas.2020.18.1.113.
  3. Alameddine, F. and Ehsani, M.R. (1991), "High strength RC connections subjected to inelastic cyclic loading", ASCE J. Struct. Eng., 117(3), 829-850. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:3(82.
  4. Arowojolu, O., Ibrahim, A., Rahman, M.K., Al-Osta, M. and Al-Gadhib, A.H. (2019), "Plastic hinge relocation in reinforced concrete beam-column joint using carbon fiber-reinforced polymer", Adv. Struct. Eng., 22(14), 2951-2965. https://doi.org/10.1177/1369433219855901.
  5. Balaji, V., Yumnam, D. and Rajashekhar Swamy, H.M. (2018), "Numerical investigation on plastic hinge relocation of reinforced beam column joint retrofitted with FRP", Int. J. Appl. Eng. Res., 13(7), 114-120.
  6. Chalioris, C.E. and Bantilas, K.E. (2017), "Shear strength of reinforced concrete beam-column joints with crossed inclined bars", Eng. Struct., 140, 241-255. https://doi.org/10.1016/j.engstruct.2017.02.072.
  7. Chalioris, C.E., Favvata, M.J. and Karayannis, C.G. (2008), "Reinforced concrete beam-column joints with crossed inclined bars under cyclic deformations", Earthq. Eng. Struct. Dyn., 37(6), 881-897. https://doi.org/10.1002/eqe.793.
  8. Chetchotisak, P., Arjsri, E. and Teerawong, J. (2020), "Strut-and-tie model for shear strength prediction of RC exterior beam-column joints under seismic loading", Bull. Earthq. Eng., 18(4), 1525-1546. https://doi.org/10.1007/s10518-019-00756-4.
  9. Dalalbashi, A., Eslami, A. and Ronagh, H.R. (2012), "Plastic hinge relocation in RC joints as an alternative method of retrofitting using FRP", Compos. Struct., 94, 2433-2439. https://doi.org/10.1016/j.compstruct.2012.02.016.
  10. Hanson, N.W. and Connor, H.W. (1967), "Seismic resistance of reinforced concrete beam-column joints", J. Struct. Div. ASCE, 93(ST5), 533-560. https://doi.org/10.1061/JSDEAG.0001785.
  11. Hawkins, N.M., Lin, I. and Ueda, T. (1987), "Anchorage of reinforcing bars for seismic forces", ACI Struct. J., 84(5), 407-418. https://doi.org/10.14359/1651.
  12. IS 10262:2009 (2009), Indian Standard Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, Imdia.
  13. IS 13920:2016 (2016), Indian Standard Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces-Code of Practice, Bureau of Indian Standards, New Delhi, Imdia.
  14. IS 1893 (Part 1):2002 (2002), Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings, Bureau of Indian Standards, New Delhi, Imdia.
  15. IS 456:2000 (2000), Indian Standard Plain and Reinforced Concrete Code of Practice, Bureau of Indian Standards, New Delhi, Imdia.
  16. Ishikawa, Y., Aso, N., Nakane, K. and Hirabayashi, M. (2014), "Practical application of R/C beam-column joints using hinge relocation technology", Concrete J., 52(7), 573-581. https://doi.org/10.3151/coj.52.573.
  17. Kumar, S.R.S., Raju, B.V. and Rajaram, G.S.B.V.S. (2002), "Hysteretic behaviour of lightly reinforced concrete exterior beam-to-column joint sub-assemblages", J. Struct. Eng., 29(1), 31-37.
  18. Lee, L.H., Kim, Y.I., Chun, Y.S. and Seo, S.Y. (1990), "Shear reinforcement and relocation of plastic hinging zone in reinforced concrete beams subjected to cyclic loads", Ninth Symposium on Earthquake Engineering, Roorkee, India, December.
  19. Li, B., Lam, E.S.S., Cheng, Y.K., Wu, B. and Wang, Y.Y. (2015), "Strengthening of non-seismically designed beam-column joints by ferrocement jackets with chamfers", Earthq. Struct., 8(5), 1017-1038. https://doi.org/10.12989/eas.2015.8.5.1017.
  20. Liu, Q., Chen, S., Lin, W. and Zeng, F. (2019), "Experimental study on novel energy-dissipating prefabricated beam-column joints", Adv. Civil Eng., 2019, 8151087. https://doi.org/10.1155/2019/8151087.
  21. Lu, X., Urukap, T.H., Li, S. and Lin, F. (2012), "Seismic behavior of interior RC beam- column joints with additional bars under cyclic loading", Earthq. Struct., 3(1), 37-57. https://doi.org/10.12989/eas.2012.3.1.037.
  22. Maheri, M.R. and Torabi, A. (2019), "Retrofitting external RC beam-column joints of an ordinary MRF through plastic hinge relocation using FRP laminates", Struct., 22, 65-75. https://doi.org/10.1016/j.istruc.2019.08.004.
  23. Murty, C.V.R., Rai, D.C., Bajpai, K.K. and Jain, S.K. (2003), "Effectiveness of reinforcement details in exterior reinforced concrete beam-column joints for earthquake resistance", ACI Struct. J., 100(2), 149-156. https://doi.org/10.14359/12478.
  24. Oudah, F. and El-Hacha, R. (2014), "Plastic hinge relocation using the RC slotted-beam column connection", Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering, Anchorage, AK, USA, July.
  25. Paulay, T., Park, R. and Preistley, M.J.N. (1978), "Reinforced concrete beam-column joints under seismic actions", ACI Struct. J., 75(11), 585-593. https://doi.org/10.14359/10971.
  26. Rezvani Sharif, M. and Ketabi, M.S. (2020), "An improved plastic hinge relocation technique for RC beam-column joints: Experimental and numerical investigations", Bull. Earthq. Eng., 18, 4191-4225. https://doi.org/10.1007/s10518-020-00855-7.
  27. Shen, X., Li, B., Chen, Y.T., Tizani, W. and Jiang, Y. (2020), "Relocating plastic hinges in reinforced concrete beam-column joints by mechanically anchored diagonal bars", Eng. Struct., 251, 113468. https://doi.org/10.1016/j.engstruct.2021.113468.
  28. Soleimani, D., Popov, E.P. and Bertero, V.V. (1979), "Hysteretic behavior of reinforced concrete beam-column subassemblages", ACI J. Proc., 76(11), 1179-1196. https://doi.org/10.14359/6978.
  29. Wongmatar, P., Hansapinyo, C. and Buachart, C. (2015), "Relocation of plastic hinge of interior beam-column connections with intermediate bars in reinforced concrete and T-section steel inserts in precast concrete frames", Int. J. Civil Environ. Eng., 8(5), 607-615.