DOI QR코드

DOI QR Code

Discrete element numerical analysis for simulating trapdoor tests to assess loosening earth pressure on tunnel linings

  • Chaemin Hwang (School of Civil, Environmental and Architectural Civil Engineering, Korea University) ;
  • Junhyuk Choi (Civil Overseas Engineering Team, Daewoo Engineering & Construction Co., Ltd.) ;
  • Jee-Hee Jung (Korea Expressway Corporation Research Institute) ;
  • Hangseok Choi (School of Civil, Environmental and Architectural Civil Engineering, Korea University)
  • Received : 2023.11.23
  • Accepted : 2024.02.23
  • Published : 2024.09.25

Abstract

Concrete linings in tunnels constructed by drilling and blasting such as NATM serve as a secondary support structure. However, these linings can face unexpected earth pressures if the primary support deteriorates or if ground conditions become unfavorable. It is crucial to determine the loosening earth pressure that allows the lining to maintain its structural integrity and prevent damage caused by this pressure. This study proposes a numerical model for simulating the trapdoor test and developing a method for calculating the loosening earth pressure. The discrete element method (DEM) was employed to describe the soil characteristics around the tunnel. Using this numerical model, a sequence of experimental trapdoor steps was simulated, and the loosening earth pressure was analyzed. Contact parameters were calibrated based on an analysis of a triaxial compression test. The reliability of the developed model was confirmed through a comparison between simulation results and laboratory test findings. The model was used to calculate the contact force applied to the trapdoor plate and to assess the settlement of soil particles. Furthermore, the model accounted for the soil-arching effect, which effectively redistributes the load to the surrounding areas. The proposed model can be applied to analyze the tunnel's cross-sectional dimensions and design stability under various ground conditions.

Keywords

Acknowledgement

This research was conducted with the support of the "National R&D Project for Consecutive Excavation Technological Development Project of Tunnel Boring Machine (RS-2022-00144188)" funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport, and managed by the Korea University.

References

  1. Chen, R.P., Tang, L.J., Ling, D.S. and Chen, Y.M. (2011), "Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method", Comput. Geotech,, 38(2), 187-195. https://doi.org/10.1016/j.compgeo.2010.11.003.
  2. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
  3. Choi, S.W., Lee, H., Choi, H., Chang, S.H., Kang, T.H. and Lee, C. (2020), "Numerical analysis of EPB TBM driving using coupled DEM-FDM Part I: Modeling", Tunn. Undergr. Sp. Tech., 30(5), 484-495. https://doi.org/10.7474/TUS.2020.30.5.496.
  4. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  5. Do, T.N., Wu, J.H. and Lin, H.M. (2017), "Investigation of sloped surface subsidence during inclined seam extraction in a jointed rock mass using discontinuous deformation analysis", Int. J. Geomech., 17(8). https://doi.org/10.1061/(asce)gm.1943-5622.0000894
  6. Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39(4), 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2.
  7. Han, J., Wang, F., Al-Naddaf, M. and Xu, C. (2017), "Progressive development of two-dimensional soil arching with displacement", Int. J. Geomech., 17(12). https://doi.org/10.1061/(asce)gm.1943-5622.0001025.
  8. Hong, W.P. and Kim, H.M. (2014), "A model test on soil arching and loosening zone developed in grounds composed of granular soil particles", J. Korean Geotech. Soc., 30(8), 13-24. https://doi.org/10.7843/KGS.2014.30.8.13.
  9. Hu, X., He, C., Lai, X., Walton, G., Fu, W. and Fang, Y. (2020), "A DEM-based study of the disturbance in dry sandy ground caused by EPB shield tunneling", Tunn. Undergr. Sp. Tech., 101. https://doi.org/10.1016/j.tust.2020.103410.
  10. Itasca Consulting Group Inc. (2021), PFC 6.0 Document; Itasca Consulting Group, Minneapolis, MN, USA. https://docs.itascacg.com/pfc600/pfc/docproject/index.html.
  11. Jiang, M. and Yin, Z.Y. (2012), "Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method", Tunn. Undergr. Sp. Tech., 32, 251-259. https://doi.org/10.1016/j.tust.2012.06.001.
  12. Jung, J. (2009), "The effect of apparent cohesion of unsaturated soils on behavior of underground structures", Ph.D. Dissertation, Korea University.
  13. Karl, T. (1943), Theoretical Soil Mechanics, John Wiley and Sons, New York
  14. Koutsabeloulis, N.C. and Grifliths, D.V. (1989), "Numerical modelling of the trap door problem", Geotechnique, 39(1), 77-89. https://doi.org/10.1680/geot.1989.39.1.77.
  15. Ladanyi, B. and Hoyaux, B. (1969), "A study of the trap-door problem in a granular mass", Can. Geotech. J., 6(1), 1-14. https://doi.org/10.1139/t69-001.
  16. Lee, H., Choi, H., Choi, S., Chang, S., Kang, T. and Lee, C. (2021), "Numerical simulation of EPB shield tunnelling with TBM operational condition control using coupled DEM-FDM", Appl. Sci., 11(6), 2551-2551. https://doi.org/10.3390/app11062551.
  17. Liakas, S., O'Sullivan, C. and Saroglou, C. (2017), "Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model", J. Rock Mech. Geotech. Eng., 9(4), 575-584. https://doi.org/10.1016/j.jrmge.2017.02.003.
  18. Liang, L., Xu, C., Chen, Q. and Chen, Q. (2020), "Experimental and theoretical investigations on evolution of soil-arching effect in 2D trapdoor problem", Int. J. Geomech., 20(6). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001643.
  19. McNulty, J.W. (1965), "An experimental study of arching in sand", Ph.D. Dissertation, University of Illinois
  20. Moradi, G. and Abbasnejad, A. (2015), "Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb", Geomech. Eng., 8(6), 829-844. https://doi.org/10.12989/gae.2015.8.6.829.
  21. Murayama, S. and Matsuoka, H. (1971), "Earth pressure on tunnels in sandy ground", Proceedings of the Japan Society of Civil Engineers, 1971(187), 95-108. https://doi.org/10.2208/jscej1969.1971.187_95.
  22. Pardo, G.S. and Saez, E. (2014), "Experimental and numerical study of arching soil effect in coarse sand", Comput. Geotech., 57, 75-84. https://doi.org/10.1016/j.compgeo.2014.01.005.
  23. Sarfarazi, V. and Tabaroei, A. (2020), "Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement", Geomech. Eng., 23(5), 455-466. https://doi.org/10.12989/gae.2020.23.5.455.
  24. Seo, S.H., Chang, S.B. and Lee, S.D. (2002), "An analysis model of the secondary tunnel lining considering ground-primary support-secondary lining interaction", Tunn. Undergr. Sp. Tech., 12(2), 107-114.
  25. Shang, J. (2020), "Rupture of veined granite in polyaxial compression: Insights from three-dimensional discrete element method modeling", J. Geophys. Res.: Solid Earth, 125(2). https://doi.org/10.1029/2019JB019052.
  26. Shen, Z., Jiang, M. and Thornton, C. (2016), "DEM simulation of bonded granular material. Part I: Contact model and application to cemented sand", Comput. Geotech., 75, 192-209. https://doi.org/10.1016/j.compgeo.2016.02.007.
  27. Song, J., Chen, K., Li, P., Zhang, Y. and Sun, C. (2018), "Soil arching in unsaturated soil with different water table", Granular Matter, 20(4). https://doi.org/10.1007/s10035-018-0849-3.
  28. Su, D., Chen, W., Wang, X., Huang, M., Pang, X. and Chen, X. (2022), "Numerical study on transverse deformation characteristics of shield tunnel subject to local soil loosening", Undergr. Space (China), 7(1), 106-121. https://doi.org/10.1016/j.undsp.2021.07.001.
  29. Tavarez, F.A. and Plesha, M.E. (2007), "Discrete element method for modelling solid and particulate materials", Int. J. Numer. Method. Eng., 70(4), 379-404. https://doi.org/https://doi.org/10.1002/nme.1881.
  30. Tu, F., Ling, D., Hu, C. and Zhang, R. (2017), "DEM-FEM analysis of soil failure process via the separate edge coupling method", Int. J. Numer. Anal. Method. Geomech., 41(9), 1157-1181. https://doi.org/10.1002/nag.2666.
  31. Wu, J.H., Ohnishi, Y. and Nishiyama, S. (2004), "Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis (DDA)", Int. J. Rock Mech. Min. Sci., 41(5), 731-743. https://doi.org/10.1016/j.ijrmms.2004.01.010.
  32. Xu, Z.H., Wang, W.Y., Lin, P., Xiong, Y., Liu, Z.Y. and He, S.J. (2020), "A parameter calibration method for PFC simulation: Development and a case study of limestone", Geomech. Eng., 22(1), 97-108. https://doi.org/10.12989/gae.2020.22.1.097.
  33. Yang, S.Q., Chen, M., Fang, G., Wang, Y.C., Meng, B., Li, Y.H. and Jing, H.W. (2018), "Physical experiment and numerical modelling of tunnel excavation in slanted upper-soft and lower-hard strata", Tunn. Undergr. Sp. Tech., 82, 248-264. https://doi.org/10.1016/j.tust.2018.08.049.
  34. Zhao, C., Alimardani Lavasan, A., Barciaga, T., Kamper, C., Mark, P. and Schanz, T. (2017), "Prediction of tunnel lining forces and deformations using analytical and numerical solutions", Tunn. Undergr. Sp. Tech., 64, 164-176. https://doi.org/10.1016/j.tust.2017.01.015. 
  35. Zhou, W., Hou, T., Yang, Y., Niu, Y., Luo, Y. and Yang, C. (2023), "Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil", Geomech. Eng., 34(5), 577-595. https://doi.org/10.12989/gae.2023.34.5.577.
  36. Zhu, X., Liu, W. and Lv, Y. (2017), "The investigation of rock cutting simulation based on discrete element method", Geomech. Eng., 13(6), 977-995. https://doi.org/10.12989/gae.2017.13.6.977.