DOI QR코드

DOI QR Code

Numerical analysis of non-uniform segmental lining design effects on large-diameter tunnels in complex multi-layered strata

  • Joohyun Park (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Seok-Jun Kang (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jun-Beom An (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Gye-Chun Cho (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2023.11.23
  • Accepted : 2024.02.23
  • Published : 2024.09.25

Abstract

In recent tunneling projects, encounters with multi-layered strata have become more frequent as the desired scale of tunneling increases. Despite substantial practical experience, the design of large-diameter shield-driven tunnels often simplifies the surrounding ground as uniform, overlooking the complexities introduced by non-uniform geotechnical factors. This study comparatively analyzed the influence of design factors, particularly segment stiffness and joint parameters, on segmental lining behavior in layered ground conditions using numerical methods. A comprehensive parametric study revealed the significant impact of deformative interaction between the lining and the soft top soil layer on overall tunnel behavior. Permitting lining deformation in the soft soil layer effectively mitigated the induced internal forces but resulted in considerable tunnel lining convergence, adopting a peanut-shaped appearance. From a practical design perspective, application of a soft segment with lower stiffness near the stiff soil layer is an economically advantageous approach, alleviating internal forces within an acceptable convergence level. Notably, around the interfaces between soil layers with different stiffnesses, the induced internal forces in the lining were minimized based on joint rotational stiffness and location. This indicates the possibility of achieving an optimal design for segmental lining joints under layered ground conditions. Additionally, a preliminary design method was proposed, which sequentially optimizes parameters for joints located near soil layer interfaces. Subsequently, a specialized design based on the proposed method for complex multi-layered strata was compared with a conventional design. The results confirmed that the internal force was effectively relieved at an allowable lining deflection level.

Keywords

Acknowledgement

This research was supported by UNDERGROUND CITY OF THE FUTURE program funded by the Ministry of Science and ICT. The first author was supported by the Innovated Talent Education Program for Smart City from MOLIT.

References

  1. Abaqus/CAE (2022), Dassault Systemes Simulia Corp., https://www.simulia.com
  2. Alagha, A.S. and Chapman, D.N. (2019), "Numerical modelling of tunnel face stability in homogeneous and layered soft ground", Tunn. Undergr. Sp. Tech., 94, 103096. https://doi.org/10.1016/j.tust.2019.103096.
  3. An, J.B., Kang, S.J., Kim, J. and Cho, G.C. (2022), "Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling", Geomech. Eng., 29(3), 291-300. https://doi.org/10.12989/gae.2022.29.3.291.
  4. Banihashemigargari, E. and Rezaeifarei, A.H. (2023), "Mechanized tunnels lining prefabricated segments production methods", Geomech. Eng., 32(5), 503-512. https://doi.org/10.12989/gae.2023.32.5.503.
  5. Bappler, K. (2016), "New developments in TBM tunnelling for changing grounds, Tunn. Undergr. Sp. Tech., 57, 18-26. http://dx.doi.org/10.1016/j.tust.2016.01.014.
  6. Blom, C.B.M. (2004), "Design philosophy of concrete linings for tunnels in soft soils", Ph.D. Dissertation, Technische Universiteit Delft, Delft.
  7. Cavalaro, S.H.P. and Aguado, A. (2012), "Packer behavior under simple and coupled stresses", Tunn. Undergr. Sp. Tech., 28, 159-173. https://doi.org/10.1016/j.tust.2011.10.008.
  8. Chu, B.L., Hsu, S.C., Chang, Y.L. and Lin, Y.S. (2007), "Mechanical behavior of a twin-tunnel in multi-layered formations", Tunn. Undergr. Sp. Tech., 22(3), 351-362. https://doi.org/10.1016/j.tust.2006.06.003.
  9. Ding, W.Q., Yue, Z.Q., Tham, L.G., Zhu, H.H., Lee, C.F. and Hashimoto, T. (2004), "Analysis of shield tunnel", Int. J. Numer. Anal. Method. Geomech., 28(1), 57-91. https://doi.org/10.1002/nag.327.
  10. Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2013), "2D numerical investigation of segmental tunnel lining behavior", Tunn. Undergr. Sp. Tech., 37, 115-127. https://doi.org/10.1016/j.tust.2013.03.008.
  11. Do, N.A. and Dias, D. (2018), "Tunnel lining design in multilayered grounds", Tunn. Undergr. Sp. Tech., 81, 103-111. https://doi.org/10.1016/j.tust.2018.07.005.
  12. Duddeck, H. and Erdmann, J. (1985), "Structural design models for tunnels in soft soil", Undergr. Space., 9(5-6), 246-259.
  13. Einstein, H. H. and Schwartz, C.W. (1979), "Simplified analysis for tunnel supports", J Geotech. Eng.-ASCE, 105(4), 499-518. https://doi.org/10.1061/AJGEB6.000078.
  14. El Naggar, H. and Hinchberger, S.D. (2008), "An analytical solution for jointed tunnel linings in elastic soil or rock", Can. Geotech. J., 45(11), 1572-1593. https://doi.org/10.1139/T08-075.
  15. Hagiwara, T., Grant, R.J., Calvello, M. and Taylor, R.N. (1999), "The effect of overlying strata on the distribution of ground movements induced by tunnelling in clay", Soils Found., 39(3), 63-73. https://doi.org/10.3208/sandf.39.3_63.
  16. Han, L., Ye, G.L., Chen, J.J., Xia, X.H. and Wang, J.H. (2017), "Pressures on the lining of a large shield tunnel with a small overburden: a case study", Tunn. Undergr. Sp. Tech., 64, 1-9. https://doi.org/10.1016/j.tust.2017.01.008.
  17. ITA Working Group 2 (2019), "Guidelines for the design of shield tunnel lining", Report No. 22, International Tunnelling and Underground Space Association (ITA-AITES).
  18. Janssen P. (1983), "Tragverhalten von Tunnelausbauten mit Gelenktubbings", Report No. 83-41, University of Braunschweig, Department of civil engineering, Institute for structural analysis, Germany.
  19. Katebi, H., Rezaei, A.H., Hajialilue-Bonab, M. and Tarifard, A. (2015), "Assessment the influence of ground stratification, tunnel and surface buildings specifications on shield tunnel lining loads (by FEM)", Tunn. Undergr. Sp. Tech., 49, 67-78. https://doi.org/10.1016/j.tust.2015.04.004.
  20. Kavvadas, M., Litsas, D., Vazaios, I. and Fortsakis, P. (2017), "Development of a 3D finite element model for shield EPB tunneling", Tunn. Undergr. Sp. Tech., 65, 22-34. http://dx.doi.org/10.1016/j.tust.2017.02.001.
  21. Khezri, N., Mohamad, H. and Fatahi, B. (2016), "Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis", Geomech. Eng., 11(4), 471-492. http://dx.doi.org/10.12989/gae.2016.11.4.471.
  22. Lee, K.M., Hou, X.Y., Ge, X.W. and Tang, Y. (2001), "An analytical solution for a jointed shield-driven tunnel lining", Int. J. Numer. Anal. Method. Geomech., 25(4), 365-390. https://doi.org/10.1002/nag.134.
  23. Li, S.C., Hu, C., Li, L.P., Song, S.G., Zhou, Y. and Shi, S.S. (2013), "Bidirectional construction process mechanics for tunnels in dipping layered formation", Tunn. Undergr. Sp. Tech., 36, 57-65. https://doi.org/10.1016/j.tust.2013.01.009.
  24. Mezger, F., Ramoni, M. and Anagnostou, G. (2018), "Options for deformable segmental lining systems for tunnelling in squeezing rock", Tunn. Undergr. Sp. Tech., 76, 64-75. https://doi.org/10.1016/j.tust.2017.12.017.
  25. Muir Wood, A.M. (1975), "The circular tunnel in elastic ground", Geotechnique, 25(1), 115-127. https://doi.org/10.1680/geot.1975.25.1.115.
  26. Nunes, M.A. and Meguid, M.A. (2009), "A study on the effects of overlying soil strata on the stresses developing in a tunnel lining", Tunn. Undergr. Sp. Tech., 24(6), 716-722. https://doi.org/10.1016/j.tust.2009.04.002.
  27. OVBB (2011), "Guideline for concrete segmental lining systems", Austrian Society for Concrete and Construction Technology (OVBB).
  28. Rashiddel, A., Hajihassani, M., Kharghani, M., Valizadeh, H., Rahmannejad, R. and Dias, D. (2022), "Numerical analysis of segmental tunnel linings-Use of the beam-spring and solid-interface methods", Geomech. Eng., 29(4), 471-486. https://doi.org/10.12989/gae.2022.29.4.471.
  29. Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
  30. Schulze, H. and Duddeck, H. (1964), "Spannungen in schildvorgetriebenen Tunneln", Beton-und Stahlbetonbau, 59(8), 169-175.
  31. Teachavorasinskun, S. and Chub-uppakarn, T. (2010), "Influence of segmental joints on tunnel lining", Tunn. Undergr. Sp. Tech., 25(4), 490-494. https://doi.org/10.1016/j.tust.2010.02.003.
  32. Xie, X., Tian, H., Zhou, B. and Li, K. (2021), "The life-cycle development and cause analysis of large diameter shield tunnel convergence in soft soil area", Tunn. Undergr. Sp. Tech., 107, 103680. https://doi.org/10.1016/j.tust.2020.103680.
  33. Zhao, J., Gong, Q.M. and Eisensten, Z. (2007), "Tunnelling through a frequently changing and mixed ground: a case history in Singapore", Tunn. Undergr. Sp. Tech., 22(4), 388-400. https://doi.org/10.1016/j.tust.2006.10.002.
  34. Zhao, K., Janutolo, M. and Barla, G. (2012), "A completely 3D model for the simulation of mechanized tunnel excavation", Rock Mech. Rock Eng., 45, 475-497. https://doi.org/10.1007/s00603-012-0224-3.
  35. Zhang, D.M., Huang, H.W., Hu, Q.F. and Jiang, F. (2015), "Influence of multi-layered soil formation on shield tunnel lining behavior", Tunn. Undergr. Sp. Tech., 47, 123-135. https://doi.org/10.1016/j.tust.2014.12.011.
  36. Zhang, D.M., Chen, S., Wang, R.C., Zhang, D.M. and Li, B.J. (2021), "Behaviour of a large-diameter shield tunnel through multi-layered strata", Tunn. Undergr. Sp. Tech., 116, 104062. https://doi.org/10.1016/j.tust.2021.104062.