DOI QR코드

DOI QR Code

Optimal mixing proportion of bottom-ash-based controlled low strength material for high fillability

  • Youngsu Lee (Taeyoung E&C) ;
  • Taeyeon Kim (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln) ;
  • Bongjik Lee (Department of Civil Engineering, Korea National University of Transportation) ;
  • Seongwon Hong (Department of Safety Engineering, Korea National University of Transportation)
  • 투고 : 2023.11.23
  • 심사 : 2024.02.06
  • 발행 : 2024.09.25

초록

Bottom ash classifies as a hazardous industrial-waste material that adversely affects human health. This study proposes its mixing with controlled low strength materials (CLSM) as a probable recycling approach. To this end, experiments have been performed to investigate the applicability of bottom-ash-based CLSM that comprises eco-friendly soil binders, water, fly ash, and a combination of bottom ash and weathered granite soil. The physical and chemical properties of the weathered granite soil, bottom ash, fly ash, and soil binders are analyzed via laboratory tests, including X-ray diffraction and scanning electron microscopy. To determine an appropriate CLSM mixing proportion, the flowability test is first performed on three mixture types having three replacement ratios of fly ash each. Subsequently, compressive-strength tests are performed. Based on the results of these tests, four mixtures are selected for the freeze-and-thaw test to determine the appropriate mixing proportion. Finally, the ground model and soil-contamination tests are performed to examine the field applicability of the mixture. This study confirms that bottom-ash-based CLSM causes negligible soil contamination, and it satisfies the prescribed performance requirements and contamination standards in Korea.

키워드

과제정보

This research was supported the Mid-Career Researcher and Young Researcher Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT; Ministry of Science and ICT) (2023R1A2C2006400, 2021R1C1C1010087) and Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A4A2001964). We greatly appreciate the support.

참고문헌

  1. ACI 229R-2 (2013), Controlled low strength materials. American Concrete Institute.
  2. Ahadzadeh Ghanad, D., Soliman, A., Godbout, S. and Palacios, J. (2020), "Properties of bio-based controlled low strength materials", Constr. Build. Mater., 262, 120742. https://doi.org/10.1016/j.conbuildmat.2020.120742.
  3. Ahmad, H., Mahboubi, A., Noorzad, A. and Zamanian, M. (2023), "Load-settlement response of strip footing overlaid fine sand strengthened with different arrangements of geogrid inclusions", J. Struct. Integrity Maint., 8(1), 12-25. https://doi.org/10.1080/24705314.2022.2142896.
  4. ASTM D560-03 (2003), Standard test methods for freezing and thawing compacted soil-cement mixtures. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0560_D0560M16.
  5. ASTM D6103 (2004), Standard test method for flow consistency of controlled low strength material (CLSM). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D6103_D6103M17.
  6. ASTM D4832 (2016), Standard test method for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D4832-16E01.
  7. Chenar, R., Fatahi, B., Ghorbani, A. and Alamoti, M. (2018), "Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash", Geomech. Eng., 14(6), 533-544. https://doi.org/10.12989/gae.2018.14.6.533.
  8. Gabr, M.A. and Bowders, J.J. (2000), "Controlled low strength material using fly ash and AMD sludge", J. Hazard. Mater., 76(2), 251-263. https://doi.org/10.1016/S0304-3894(00)00202-8.
  9. Gassman, S.L., Pierce, C.E. and Schroder, A.J. (2001), "Effects of prolonged mixing and retempering on properties of controlled low strength material (CLSM)", ACI Mater. J., 98(2), 194-199.
  10. Green, B.H., Staheli, K., Bennett, D. and Walley, D.M. (1998), "Fly-ash-based controlled low strength material (CLSM) used for critical microtunneling applications", (Eds., Howard, A. and Hitch, J.), The design and application of controlled low strength materials (flowable fill). ASTM International, West Conshohocken, PA. https://doi.org/10.1520/STP13069S.
  11. Gullu, H. and Fedakar, H. (2017), "On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence", Geomech. Eng., 12(3), 441-464. https://doi.org/10.12989/gae.2017.12.3.441.
  12. Irassar, E.F., Bonavetti, V.L., Trezza, M.A. and Gonzalez, M.A. (2005), "Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20℃", Cement Concrete Compos., 27(1), 77-84. https://doi.org/10.1016/j.cemconcomp.2003.10.003.
  13. Jefferis, S.A. (1997), "The origins of the slurry trench cut-off and a review of cement-bentonite cut-off walls in the UK", Int. Containment Ttechnology Conference and Exhibition, 52~61. United States. https://www.osti.gov/servlets/purl/576479.
  14. JHS A 313-1992 (1992), Mortar flow test, Japan Highway Public Corporation Test Method, Japan Highway Public Corporation.
  15. Katz, A. and Kovler, K. (2004), "Utilization of industrial by-products for the production of controlled low strength materials (CLSM)", Waste Manage. 24(5), 501-512. https://doi.org/10.1016/S0956-053X(03)00134-X.
  16. Kim, Y.S., Do, T.M., Kim, H.K. and Kang, G. (2016), "Utilization of excavated soil in coal ash-based controlled low strength material (CLSM)", Constr. Build. Mater., 124, 598-605. https://doi.org/10.1016/j.conbuildmat.2016.07.053.
  17. Kim, Y.S., Dang, M., Do, T. and Lee, J.K. (2018), "Soil stabilization by ground bottom ash and red mud", Geomech. Eng., 16(1), 105-112. https://doi.org/10.12989/gae.2018.16.1.105.
  18. Kumar, S. and Rai, B. (2022), "Synergetic effect of fly ash and silica fume on the performance of high volume fly ash self-compacting concrete", J. Struct. Integrity Maint., 7(1), 61-74. https://doi.org/10.1080/24705314.2021.1892571.
  19. Lee, N.K., Kim, H.K., Park, I.S. and Lee, H.K. (2013), "Alkali-activated, cementless, controlled low strength materials (CLSM) utilizing industrial by-products", Constr. Build. Mater., 49, 738-746. https://doi.org/10.1016/j.conbuildmat.2013.09.002.
  20. Lee, S.Y., Yoon, H.H., Son, M., Kong, J.Y. and Jung, H.S. (2018), "Controlled low strength material for emergency restoration using bottom ash and gypsum", J. Korean Geosynth. Soc., 17(2), 19-31. https://doi.org/10.12814/jkgss.2018.17.2.019.
  21. Lim, S.H., Choo, H.W., Lee, W.J. and Lee, C.H. (2016), "The characterization of controlled low strength material (CLSM) using high CaO fly ash without chemical alkaline activator", J Korean Geo-Environ. Soc., 17(12), 17-26. https://doi.org/10.14481/jkges.2016.17.12.17.
  22. Ling, T.C, Kaliyavaradhan, S.K. and Poon, C.S. (2018), "Global perspective on application of controlled low strength material (CLSM) for trench backfilling - An overview", Constr. Build. Mater., 158, 535-548.
  23. Mohanty, S., Pradhan, P. and Mohanty, C. (2017), "Stabilization of expansive soil using industrial wastes", Geomech. Eng., 12(1), 111-125. https://doi.org/10.12989/gae.2017.12.1.111.
  24. Naik, T.R., Kraus, R.N. and Siddique, R. (2003), "Controlled low strength materials containing mixtures of coal ash and new pozzolanic material", ACI Mater. J., 100(3), 208-215.
  25. Naganathan, S., Razak, H.A. and Hamid, S.N.A. (2010), "Effect of kaolin addition on the performance of controlled low strength material using industrial waste incineration bottom ash", Waste Manage. Res., 28(9), 848-860. https://doi.org/10.1177/0734242X09355073.
  26. Naganathan, S., Razak, H.A. and Hamid, S.N.A. (2012a), "Properties of controlled low strength material made using industrial waste incineration bottom ash and quarry dust", Mater. Design, 33, 56-63. https://doi.org/10.1016/j.matdes.2011.07.014.
  27. Naganathan, S., Mustapha, K.N. and Omar, H. (2012b), "Use of recycled concrete aggregate in controlled low strength material (CLSM)", Civ. Eng. Dimens., 14(1), 13-18. https://doi.org/10.9744/ced.14.1.13-18.
  28. Mizuguchi, H., Onodera, O., Horiguchi, T. and Ii, H. (2004), "Application of CLSM in Japan", Concrete J., 42(10), 19-28. https://doi.org/10.3151/coj1975.42.10_19.
  29. Park, S.M., Lee, N.K. and Lee, H.K. (2017), "Circulating fluidized bed combustion ash as controlled low strength material (CLSM) by alkaline activation", Constr. Build. Mater., 156, 728-738. https://doi.org/10.1016/j.conbuildmat.2017.09.001.
  30. Pierce, C.E., Tripathi, H. and Brown, T.W. (2003), "Cement kiln dust in controlled low strength materials", ACI Mater. J., 100(6), 455-462.
  31. Razak, H.A., Naganathan, S. and Hamid, S.N.A. (2009), "Performance appraisal of industrial waste incineration bottom ash as controlled low strength material", J. Hazard. Mater., 172(2), 862-867. https://doi.org/10.1016/j.jhazmat.2009.07.070.
  32. Rekha, A., Keerthana, B. and Ameerlal, H. (2016), "Performance of fly ash stabilized clay reinforced with human hair fiber", Geomech. Eng., 10(5), 677-387. https://doi.org/10.12989/gae.2016.10.5.677.
  33. Siddique, R. (2009), "Utilization of waste materials and by-products in producing controlled low strength materials", Resour. Conserv. Recycl., 54(1), 1-8. https://doi.org/10.1016/j.resconrec.2009.06.001.
  34. Soil Environment Conservation Act of South Korea 15102, 2017.
  35. Tran, D.V., Sancharoen, P., Klomjit, P., Tangtermsirikul, S. and Nguyen, T.H.Y. (2023), "Prediction equations for corrosion rate of reinforcing steel in cement-fly ash concrete", J. Struct. Integrity Maintenance, 8(2), 91-99 https://doi.org/10.1080/24705314.2023.2165749.
  36. Transportation Research Board (2008), Development of a recommended practice for use of controlled low strength material in highway construction (NCHRP report 597). The National Academies Press, Washington D.C. https://doi.org/10.17226/13900.
  37. Trejo, D., Folliard, K.J. and Du, L. (2004), "Sustainable development using controlled low-strength material", Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China.
  38. Xia, P., Li, Y., Xie, K., Cao, M. and Tan, Y. (2021), "Effect of plasma cladding speed on the microstructure and properties of ZrC-ZrB2/NiAl coating", J. Mater. Res., 24(4). https://doi.org/10.1590/1980-5373-MR-2020-0535.