DOI QR코드

DOI QR Code

Lifespan assessment of piezoelectric sensors under disposal condition of high-level nuclear waste repository

  • Changhee Park (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hyun-Joong Hwang (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chang-Ho Hong (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Jin-Seop Kim (Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute) ;
  • Gye-Chun Cho (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2023.11.22
  • Accepted : 2024.02.02
  • Published : 2024.09.10

Abstract

A high-level nuclear waste (HLW) repository is designed for the long-term disposal of high-level waste. Positioned at depths of 500-1000 meters, it offers an alternative to the insufficient storage space for spent fuels, providing a long-term solution. High-level waste emits heat and radiation, causing structural deterioration, including strength reduction and cracks. Therefore, the use of piezoelectric sensors for structural health monitoring is essential for evaluating the safety of the structure over time. Unlike other structures, the HLW repository restricts human access after the disposal of HLW, rendering sensor replacement impossible. Therefore, it is necessary to assess both the lifespan and suitability of sensors under the disposal conditions in the HLW repository. This study employed an accelerated life test (ALT) to assess the sensor's lifespan under disposal conditions. Failure modes, failure mechanisms, and operational limits were analyzed through accelerated stress test (AST). Additionally, the parameters of the Weibull life probability distribution and the Arrhenius accelerated life model were estimated through statistical methods, including the likelihood ratio test, maximum likelihood estimation, and hypothesis testing. Results confirmed that the sensor's lifespan decreases significantly with the increase in the temperature limit of the HLW repository. The findings of this study can be used for improving sensor lifespan through shielding, development of alternative sensors, or lifespan evaluation of alternative monitoring sensors.

Keywords

Acknowledgement

This research was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (2022M2E3A3015608) funded by the Minister of Science and ICT. The first author was supported by the Innovated Talent Education Program for Smart Cities of MOLIT.

References

  1. Chernoff, H. (1962), "Optimal accelerated life designs for estimation", Technometrics, 4(3), 381-408. https://doi.org/10.1080/00401706.1962.10490020.
  2. Choi, H.J., Lee, J.Y. and Kim, S.S. (2008), "Korean reference HLW disposal system", KAERI/TR-3563/2008, Korea Atomic Energy Research Institute.
  3. Choi, J.W., Choi, H.J., Lee, J.Y. and Chun, K.S. (2006), "High-level radwaste disposal technology development", KAERI/RR-2765/2006, Korea Atomic Energy Research Institute.
  4. D'Agostino, R.B. (1986), Goodness-of-Fit-Techniques. Routledge, New York, NY, U.S.A.
  5. Dennis Jr, J.E. and Schnabel, R.B. (1996). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society for Industrial and Applied Mathematics. Philadelphia, Commonwealth of Pennsylvania, U.S.A.
  6. Dong, X., Tan, X., Lin, X., Zhang, X., Hou, X. and Wu, D. (2022), "Reliability analysis of piles based on proof vertical static load test", Geomech. Eng., 29(5), 487-496. https://doi.org/10.12989/gae.2022.29.5.487.
  7. Escobar, L.A. and Meeker, W.Q. (1995), "Planning accelerated life tests with two or more experimental factors", Technometrics, 37(4), 411-427. https://doi.org/10.1080/00401706.1995.10484374.
  8. Evans, M. (2009), Minitab manual. W.H. Freeman and Company, New York, NY, USA.
  9. Gens Sole, A., Barboza de Vasconcelos, R. and Olivella Pastalle, S. (2020), "Towards higher temperatures in nuclear waste repositories", E3S web of conferences, 205(01001), 1-8. https://doi.org/10.1051/e3sconf/202020501001.
  10. Ghasemi, S.H. and Nowak, A.S. (2018), "Reliability analysis of circular tunnel with consideration of the strength limit state", Geomecha. Eng., 15(3), 879-888. https://doi.org/10.12989/gae.2018.15.3.879.
  11. Goh, A.T. and Hefney, A.M. (2010), "Reliability assessment of EPB tunnel-related settlement", Geomech. Eng., 2(1), 57-69. https://doi.org/10.12989/gae.2010.2.1.057.
  12. Hamrouni, A., Dias, D. and Sbartai, B. (2018), "Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm", Geomech. Eng., 15(4), 937-945. http://doi.org/10.12989/gae.2018.15.4.000
  13. Hwang, H.J., Park, C., Hong, C.H., Kim, J.S. and Cho, G.C. (2022), "Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository", J. Korean Tunn. Undergr. Sp. Assoc., 24(6), 451-464. https://doi.org/10.9711/KTAJ.2022.24.6.451.
  14. Ji, J. and Liao, H.J. (2014), "Sensitivity-based reliability analysis of earth slopes using finite element method", Geomech. Eng., 6(6), 545-560. https://doi.org/10.12989/gae.2014.6.6.545.
  15. Jonsson, M. (2012), "Radiation effects on materials used in geological repositories for spent nuclear fuel", Int. Scholarly Res.Notices, 2012. https://doi.org/10.5402/2012/639520.
  16. Kim, C.M. and Bai, D.S. (2002), "Analyses of accelerated life test data under two failure modes", Int. J. Reliab. Quality Saf. Eng., 9(2), 111-125. https://doi.org/10.1142/S0218539302000706.
  17. Kim, J.S., Cho, W.J., Park, S., Kim, G.Y. and Baik, M.H. (2019), "A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer", J. Korean Tunn. Undergr. Sp. Assoc., 21(5), 587-609. https://doi.org/10.9711/KTAJ.2019.21.5.587.
  18. Kim, J.S., Kwon, S.K., Sanchez, M. and Cho, G.C. (2011), "Geological storage of high level nuclear waste", KSCE J. Civil Eng., 15(4), 721-737. http://doi.org/10.1007/s12205-011-0012-8.
  19. Kim, S.H., Yeom, J., Baek, I.S., Kim, J.S. and Sung, S.I. (2020), "Determining the statistical sample size for reliability testing", J. Appl. Reliab., 20(1), 84-93. https://doi.org/10.33162/JAR.2020.3.20.1.84.
  20. Kober, F., Schneeberger, R., Vomvoris, S., Finsterle, S. and Lanyon, B. (2023), "The HotBENT Experiment: objectives, design, emplacement and early transient evolution", Geoenergy, 1(1), 2023-021. https://doi.org/10.1144/geoenergy2023-021.
  21. Kook, D., Choi, J., Kim, J. and Kim, Y. (2013), "Review of spent fuel integrity evaluation for dry storage", Nuclear Eng. Tech., 45(1), 115-124. https://doi.org/10.5516/NET.06.2012.016.
  22. Kwon, S., Cho, W.J. and Lee, J.O. (2013), "An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository", Nuclear Eng. Tech., 45(1), 41-52. https://doi.org/10.5516/NET.06.2012.015.
  23. Marozau, I., Auchlin, M., Pejchal, V., Souchon, F., Vogel, D., Lahti, M. and Sereda, O. (2018), "Reliability assessment and failure mode analysis of MEMS accelerometers for space applications", Microelectron. Reliab., 88, 846-854. https://doi.org/10.1016/j.microrel.2018.07.118.
  24. McKinley, I.G., Alexander, W.R. and Blaser, P.C. (2007), "Development of geological disposal concepts", Radioactivity in the Environment, 9, 41-76. https://doi.org/10.1016/S1569-4860(06)09003-6
  25. MOTIE (2021), "A second basic national plan for HLW management", Ministry of Trade, Industry and Energy.
  26. Nelson, W.B. (2009), Accelerated testing: statistical models, test plans, and data analysis, John Wiley & Sons, Hoboken, State of New Jersey, U.S.A.
  27. Rodriguez, M.A. (2014), "Anticipated degradation modes of metallic engineered barriers for high-level nuclear waste repositories", JOM, 66(3), 503-525. http://doi.org/10.1007/s11837-014-0873-7
  28. Sall, J., Stephens, M.L., Lehman, A. and Loring, S. (2017),. JMP start statistics: a guide to statistics and data analysis using JMP. Sas Institute, Cary, State of North Carolina, U.S.A.
  29. Sellke, T., Bayarri, M.J. and Berger, J.O. (2001), "Calibration of ρ values for testing precise null hypotheses", The American Statistician, 55(1), 62-71. https://doi.org/10.1198/000313001300339950.
  30. Shea, H.R. (2009), "Radiation sensitivity of microelectromechanical system devices", J. Micro/Nanolithography, MEMS and MOEMS, 8(3), 031303-031303. https://doi.org/10.1117/1.3152362.
  31. Sjoberg, L. (2004), "Local acceptance of a high-level nuclear waste repository", Risk Anal. J., 24(3), 737-749. https://doi.org/10.1111/j.0272-4332.2004.00472.x.
  32. SKB (2010), Choice of method-evaluation of strategies and systems for disposal of spent nuclear fuel.
  33. Trevisanello, L., Meneghini, M., Mura, G., Vanzi, M., Pavesi, M., Meneghesso, G. and Zanoni, E. (2008), "Accelerated life test of high brightness light emitting diodes", IEEE T. Device Mater. Reliab., 8(2), 304-311. http://doi.org/10.1109/TDMR.2008.919596.
  34. Wlodkowski, P.A. (1999), "Physics of failure modes in accelerometers utilizing single crystal piezoelectric materials", Doctoral Dissertation. University of Maryland, College Park, State of Maryland, U.S.A.
  35. Woo, J.T. (2018). "A study on the regulation of durability standard of underground structures monitoring sensors", J. Korean Tunn. Undergr. Sp. Assoc., 20(1), 73-81. https://doi.org/10.9711/KTAJ.2018.20.1.073.
  36. Zheng, L., Rutqvist, J., Birkholzer, J.T. and Liu, H.H. (2015), "On the impact of temperatures up to 200 C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling", Eng. Geol., 197, 278-295. https://doi.org/10.1016/j.enggeo.2015.08.026.