Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C2013162).
References
- Ahn, C.Y., Park, D. and Moon, S.W. (2022), "Analysis of surface settlement troughs induced by twin shield tunnels in soil: A case study", Geomech. Eng., 30(4), 325-336. https://doi.org/10.12989/gae.2022.30.4.325.
- Alseid, B., Chen, J., Huang, H. and Seo, H. (2023), "RCF machine learning method to measure for geological structures in 3d point cloud of rock tunnel face", Available at SSRN 4503641. http://dx.doi.org/10.2139/ssrn.4503641.
- Ayasrah, M.M., Qiu, H. and Zhang, X. (2021), "Influence of cairo metro tunnel excavation on pile deep foundation of the adjacent underground structures: Numerical study", Symmetry, 13(3), 426. https://doi.org/10.3390/sym13030426.
- Chakeri, H., Hasanpour, R., Hindistan, M.A., and unver, B. (2011), "Analysis of interaction between tunnels in soft ground by 3D numerical modeling", Bull. Eng. Geol. Environ., 70, 439-448. https://doi.org/10.1007/s10064-010-0333-8.
- Choi, J.I. and Lee, S.W. (2010), "Influence of existing tunnel on mechanical behavior of new tunnel", KSCE J. Civil Eng., 14, 773-783. https://doi.org/10.1007/s12205-010-1013-8.
- Chu, B.L., Hsu, S.C., Chang, Y.L. and Lin, Y.S. (2007), "Mechanical behavior of a twin-tunnel in multi-layered formations", Tunn. Undergr. Sp. Tech., 22(3), 351-362. https://doi.org/10.1016/j.tust.2006.06.003.
- Das, B.M. (2011), Principles of Foundation Engineering, Cengage Learning, Boston, Massachusetts, USA.
- Do, N.A., Dias, D. and Oreste, P. (2016), "3D numerical investigation of mechanized twin tunnels in soft ground- Influence of lagging distance between two tunnel faces", Eng. Struct., 109, 117-125. https://doi.org/10.1016/j.engstruct.2015.11.053.
- Fang, Q., Zhang, D., Li, Q. and Wong, L.N.Y. (2015), "Effects of twin tunnels construction beneath existing shield-driven twin tunnels", Tunn. Undergr. Sp. Tech., 45, 128-137. https://doi.org/10.1016/j.tust.2014.10.001.
- Gordan, B., Koopialipoor, M., Clementking, A., Tootoonchi, H., and Tonnizam Mohamad, E. (2019), "Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques", Eng. with Comput., 35, 945-954. https://doi.org/10.1007/s00366-018-0642-2.
- Han, Y., Jiang, X., Wang, Y. and Wang, H. (2023), "Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement", Geomech. Eng., 32(3), 271-291. https://doi.org/10.12989/gae.2023.32.3.271.
- Heama, N., Jongpradist, P., Lueprasert, P. and Suwansawat, S. (2017), "Investigation on tunnel responses due to adjacent loaded pile by 3D finite element analysis", Geomate J., 12(31), 63-70. https://doi.org/10.21660/2017.31.6542.
- Hong, S.K., Oh, D.W., Kong, S.M. and Lee, Y.J. (2020), "Investigation of divergence tunnel excavation according to horizontal offsets between tunnels", Geomech. Eng., 21(2), 111-122. https://doi.org/10.12989/gae.2020.21.2.111.
- Jeon, Y.J. and Lee, C.J. (2023), "Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures", Geomech. Eng., 33(5), 463-475. https://doi.org/10.12989/gae.2023.33.5.463.
- Jung, H.S., Kim, J.H., Yoon, H.H., Sagong, M. and Lee, H.H. (2022), "Experimental study to determine the optimal tensile force of non-open cut tunnels using concrete modular roof method", Geomech. Eng., 29(3), 229-236. https://doi.org/10.12989/gae.2022.29.3.229.
- Kim, C.Y., Bae, G.J., Hong, S.W., Park, C.H., Moon, H.K. and Shin, H.S. (2001), "Neural network based prediction of ground surface settlements due to tunnelling", Comput. Geotech., 28(6-7), 517-547. https://doi.org/10.1016/S0266-352X(01)00011-8.
- Kim, Y.S., Ko, H.W., Kim, J.H. and Lee, J.G. (2012), "Dynamic deformation characteristics of Joomunjin standard sand using cyclic triaxial test", J. Korean Geotech. Soc., 28(12), 53-64. https://doi.org/10.7843/kgs.2012.28.12.53.
- Kong, S.M., Jung, H.S. and Lee, Y.J. (2017), "Investigation of ground behaviour adjacent to an embedded pile according to various tunnel volume losses", Int. J. Geo-Eng., 8, 1-15. https://doi.org/10.1186/s40703-017-0043-1.
- Kong, S.M., Oh, D.W., Ahn, H.Y., Lee, H.G. and Lee, Y.J. (2016), "Investigation of ground behaviour between plane-strain grouped pile and 2-arch tunnel station excavation", J. Korean Tunn. Undergr. Sp. Assoc., 18(6), 535-544. https://doi.org/10.9711/KTAJ.2016.18.6.535.
- Korean Geotechnical Society (2016), Design Criteria for Structure Foundation, Korean Geotechnical Society, Seoul, Republic of Korea.
- Lambe, T.W. and Whitman, R.V. (1979), Soil mechanics, John Wiley & Son, Hoboken, New Jersey, USA.
- Liu, X., Suliman, L., Zhou, X., Zhang, J., Xu, B., Xiong, F. and Abd Elmageed, A. (2022), "The difference in the slope supported system when excavating twin tunnels: Model test and numerical simulation", Geomech. Eng., 31(1), 15-30. https://doi.org/10.12989/gae.2022.31.1.015.
- Marshall, A.M. and Haji, T. (2015), "An analytical study of tunnel-pile interaction", Tunn. Undergr. Sp. Tech., 45, 43-51. https://doi.org/10.1016/j.tust.2014.09.001.
- Mirhabibi, A. and Soroush, A. (2012), "Effects of surface buildings on twin tunnelling-induced ground settlements", Tunn. Undergr. Sp. Tech., 29, 40-51. https://doi.org/10.1016/j.tust.2011.12.009.
- Mroueh, H., and Shahrour, I. (2002), "Three-dimensional finite element analysis of the interaction between tunneling and pile foundations", Int. J. Numer. Anal. Method. Geomech., 26(3), 217-230. https://doi.org/10.1002/nag.194.
- Nejad, F.P., Jaksa, M.B., Kakhi, M. and McCabe, B.A. (2009), "Prediction of pile settlement using artificial neural networks based on standard penetration test data", Comput. Geotech., 36(7), 1125-1133. https://doi.org/10.1016/j.compgeo.2009.04.003.
- Ng, C.W.W. and Lu, H. (2014), "Effects of the construction sequence of twin tunnels at different depths on an existing pile", Can. Geotech. J., 51(2), 173-183. https://doi.org/10.1139/cgj2012-0452.
- Ng, C.W.W., Lu, H. and Peng, S.Y. (2013), "Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile", Tunn. Undergr. Sp. Tech., 35, 189-199. https://doi.org/10.1016/j.tust.2012.07.008.
- Oh, D.W., Kong, S.M., Kim, S.B. and Lee, Y.J. (2023), "Prediction and analysis of axial stress of piles for piled raft due to adjacent tunneling using explainable AI", Appl. Sci., 13(10), 6074. https://doi.org/10.3390/app13106074.
- Oh, D.W., Kong, S.M., Lee, Y.J. and Park, H.J. (2021), "Prediction of change rate of settlement for piled raft due to adjacent tunneling using machine learning", Appl. Sci., 11(13), 6009. https://doi.org/10.3390/app11136009.
- PLXIS (2023), Manuals-PLAXIS; Bentley Systems, Pennsylvania, USA. https://communities.bentley.com/products/geotech-analysis/w/wiki/46137/manuals---plaxis
- Potts, D.M. and Zdravkovic, L. (2001), Finite Element Analysis in Geotechnical Engineering: Application, Thomas Telford, London, United Kingdom.
- Sou-Sen, L. and Hsien-Chuang, L. (2004), "Neural-network-based regression model of ground surface settlement induced by deep excavation", Automat. Constr., 13(3), 279-289. https://doi.org/10.1016/S0926-5805(03)00018-9.
- Xiang, Y. and Feng, S. (2013), "Theoretical prediction of the potential plastic zone of shallow tunneling in vicinity of pile foundation in soils", Tunn. Undergr. Sp. Tech., 38, 115-121. https://doi.org/10.1016/j.tust.2013.05.006.