DOI QR코드

DOI QR Code

Decline in sestrin 2 expression during aging shifts mesenchymal stem cell differentiation from osteogenic to adipogenic lineage

  • Do Yeun Kim (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Hyun-Jung Park (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jeong-Hwa Baek (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
  • Received : 2024.05.23
  • Accepted : 2024.09.09
  • Published : 2024.09.30

Abstract

Sestrin 2 (SESN2) is a member of the sestrin family of stress-induced proteins that negatively regulate aging-associated biological processes. This study aims to investigate the role of SESN2 in regulating the differentiation potential and senescence of mesenchymal stem cells (MSCs) derived from young and elderly donors. Bulk RNA sequencing revealed a common decline in the SESN2 mRNA levels in MSCs from elderly individuals, which was confirmed via reverse transcription-polymerase chain reaction and western blot analyses. SESN2 knockdown in MSCs from young donors resulted in phenotypic changes similar to those in MSCs from elderly donors, including an enhanced expression of senescence and adipogenic markers and diminished expression of osteogenic markers. To confirm the effect of decreased SESN2 expression on osteogenic and adipogenic differentiation, we induced Sesn2 knockdown in mouse bone marrow-derived MSCs. Sesn2 knockdown suppressed the mRNA expression of osteogenic marker genes, alkaline phosphatase activity, and matrix mineralization. Furthermore, Sesn2 knockdown enhanced mRNA expression of the adipogenic marker genes and intracellular lipid accumulation. These results suggest that a decline in SESN2 expression during aging contributes to the shift of MSC differentiation from osteogenic to adipogenic lineage.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1003709).

References

  1. Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 2013;18:792-801. doi: 10.1016/j.cmet.2013.08.018 
  2. Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E, Karin M. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010;327:1223-8. doi: 10.1126/science.1182228 
  3. Budanov AV, Lee JH, Karin M. Stressin' Sestrins take an aging fight. EMBO Mol Med 2010;2:388-400. doi: 10.1002/emmm.201000097 
  4. Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu J, Shi J, Yang G. The functions and roles of sestrins in regulating human diseases. Cell Mol Biol Lett 2022;27:2. doi: 10.1186/s11658-021-00302-8 
  5. Xu D, Shimkus KL, Lacko HA, Kutzler L, Jefferson LS, Kimball SR. Evidence for a role for Sestrin1 in mediating leucine-induced activation of mTORC1 in skeletal muscle. Am J Physiol Endocrinol Metab 2019;316:E817-28. doi: 10.1152/ajpendo.00522.2018 
  6. Fang H, Shi X, Wan J, Zhong X. Role of sestrins in metabolic and aging-related diseases. Biogerontology 2024;25:9-22. doi: 10.1007/s10522-023-10053-y 
  7. Guillen C, Benito M. mTORC1 overactivation as a key aging factor in the progression to type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2018;9:621. doi: 10.3389/fendo.2018.00621 
  8. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature 2013;493:338-45. doi: 10.1038/nature11861 
  9. Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 2005;139:504-9. doi: 10.1007/s10517-005-0331-1 
  10. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 1996;11:568-77. doi: 10.1002/jbmr.5650110504 
  11. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001;2:165-71. doi: 10.1023/a:1011513223894 
  12. Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 2019;52:e12688. doi: 10.1111/cpr.12688 
  13. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015;125:1509-22. doi: 10.1172/JCI77716 
  14. Li X, Wang X, Zhang C, Wang J, Wang S, Hu L. Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Prolif 2022;55:e13191. doi: 10.1111/cpr.13191 
  15. Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, Litwa HP, Neibart SS, Kadiyala M, Wong MZ, Mizrahi MM, Yim NL, Ramme AJ, Egol KA, Leucht P. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci U S A 2019;116:6995-7004. doi: 10.1073/pnas.1810692116 
  16. Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transplant 2017;26:1520-9. doi: 10.1177/0963689717721201 
  17. Wang YG, Qu XH, Yang Y, Han XG, Wang L, Qiao H, Fan QM, Tang TT, Dai KR. AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis. Cell Signal 2016;28:1270-82. doi: 10.1016/j.cellsig.2016.06.004 
  18. Ling NXY, Kaczmarek A, Hoque A, Davie E, Ngoei KRW, Morrison KR, Smiles WJ, Forte GM, Wang T, Lie S, Dite TA, Langendorf CG, Scott JW, Oakhill JS, Petersen J. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat Metab 2020;2:41-9. doi: 10.1038/s42255-019-0157-1 
  19. Qadir AS, Um S, Lee H, Baek K, Seo BM, Lee G, Kim GS, Woo KM, Ryoo HM, Baek JH. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells. J Cell Biochem 2015;116:730-42. doi: 10.1002/jcb.25026 
  20. Lee HL, Woo KM, Ryoo HM, Baek JH. Distal-less homeobox 5 inhibits adipogenic differentiation through the down-regulation of peroxisome proliferator-activated receptor γ expression. J Cell Physiol 2013;228:87-98. doi: 10.1002/jcp.24106 
  21. Khosla S, Farr JN, Monroe DG. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest 2022;132:e154888. doi: 10.1172/JCI154888 
  22. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33:919-26. doi: 10.1016/j.bone.2003.07.005 
  23. Shen T, Alvarez-Garcia O, Li Y, Olmer M, Lotz MK. Suppression of Sestrins in aging and osteoarthritic cartilage: dysfunction of an important stress defense mechanism. Osteoarthritis Cartilage 2017;25:287-96. doi: 10.1016/j.joca.2016.09.017 
  24. Rajan SP, Anwar M, Jain B, Khan MA, Dey S, Dey AB. Serum sestrins: potential predictive molecule in human sarcopenia. Aging Clin Exp Res 2021;33:1315-24. doi: 10.1007/s40520-020-01642-9 
  25. Rai N, Venugopalan G, Pradhan R, Ambastha A, Upadhyay AD, Dwivedi S, Dey AB, Dey S. Exploration of novel antioxidant protein Sestrin in frailty syndrome in elderly. Aging Dis 2018;9:220-7. doi: 10.14336/AD.2017.0423 
  26. Hwang CY, Han YH, Lee SM, Cho SM, Yu DY, Kwon KS. Sestrin2 attenuates cellular senescence by inhibiting NADPH oxidase 4 expression. Ann Geriatr Med Res 2020;24:297-304. doi: 10.4235/agmr.20.0051 
  27. Kong S, Li J, Pan X, Zhao C, Li Y. Allicin regulates Sestrin2 ubiquitination to affect macrophage autophagy and senescence, thus inhibiting the growth of hepatoma cells. Tissue Cell 2024;88:102398. doi: 10.1016/j.tice.2024.102398 
  28. Wang H, Xi J, Zhang Z, Li J, Guo L, Li N, Sun Y, Li X, Han X. Sestrin2 is increased in calcific aortic disease and inhibits osteoblastic differentiation in valvular interstitial cells via the nuclear factor E2-related factor 2 pathway. J Cardiovasc Pharmacol 2022;80:609-15. doi: 10.1097/FJC.0000000000001314 
  29. Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 2015;24:1150-63. doi: 10.1089/scd.2014.0484 
  30. Martin SK, Fitter S, Dutta AK, Matthews MP, Walkley CR, Hall MN, Ruegg MA, Gronthos S, Zannettino AC. Brief report: the differential roles of mTORC1 and mTORC2 in mesenchymal stem cell differentiation. Stem Cells 2015;33:1359-65. doi: 10.1002/stem.1931 
  31. Kim EK, Lim S, Park JM, Seo JK, Kim JH, Kim KT, Ryu SH, Suh PG. Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase. J Cell Physiol 2012;227:1680-7. doi: 10.1002/jcp.22892