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Abstract

This paper deals with asymptotic approximations analysis of M/M/s and M/D/s queues. For M/M/s queue, we
observe ‘“‘economies of scale” under the fixed utilization p and the fixed probability « that customer waits in
system, how the average system size vary according to the number of servers s increasing. Simulation results
show that as s increases, the number of servers who are idling increases, that is, the slack n—E[@Q,] diverges.
In addition, through changing the waiting probability « under the M/M/s system, « was not highly sensitive to the
behavior of the system size. And, it is shown that using p, =1—k/+/n to handle heavy—traffic regime is only appropriate
for =1 by observing the effect on the performance of the system with different values of k. For the M/D/s queue,
two approximations are used to evaluate the expected system size under the fixed e and e. Simulations and comparison
of these two approximations show that Cosmetatos’ approximation performs quite well when the number of servers
is small and traffic intensity is heavy, but it overestimates the true value for the large number of servers. Meanwhile,
the modified approximation gives good results for the steady state count of the system although the number of

servers grows large.
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1. Introduction

Multi—server queue has been important
models for evaluating the performance of
various service systems (Jeong, 2018; Lee,
2023; Wang et al., 2020) in many fields such
as computer/communications, transportation,
manufacturing and so on. Call center (Shim,
2022) is one of the simplest and most widely
used such models with s operators (servers)
Corresponding to the

that have

and arrival rate .

systems such as call centers
multi—servers with any service distribution,
and customers arriving with Poisson process,
the analysis of multi—server queueing systems
this

analysis

has been paid attention. In study,

asymptotic  approximations under
heavy traffic regime is dealt. Heavy traffic is
the regime in which the utilization of the
servers approaches the maximum permissible,
Le., p goes to 1 as close as possible, but this
does not imply that p is exactly equal to 1. In
order to analyze asymptotic approximation
under the heavy traffic regime, we focus on
the two systems that have different service
distributions, respectively, one of which has
independent and identical exponential service
time, so—called M/M/s queue, and the other of
which has deterministic service time

all
Note

independent

(.e.,
customers),
that both

identical

constant service time for

so—called M/D/s
systems

queue.
have and
exponential inter—arrival times, 1.e., Poisson
We the

approximation in the regime where the number

arrival  process. carry  out
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of servers s becomes increasingly large, the
utilization p has the value very close to one,
the expected value of system size increases
according to s. The point here is to observe
the expected value of system size as s
increases under the assumption of system
stability with fixing close to one and fixing the
waiting probability in system denoted by «.
For the numerical approach of M/M/s queue,
this research basically follows the mechanism
that was used in Kumar (2008) in which the
this

in heavy traffic

asymptotic analysis of system was

M/D/s

queue has no difference from M/M/s queue

conducted regime.
except for having the deterministic service
time instead of exponential one, and it is often
the case that is accepted as an approximation
to some real system, either because the
distribution of service times (or inter—arrival
times) has a very small coefficient of variation
or in order to obtain a bound on some
measure of practical interest; see Cosmetatos
(1975).

M/D/s queue that has exact formulas such as

However, in practice, dealing with

expected value of system size and mean

waiting time before starting service is

non—trivial, as it is shown in the formulation
(1) that has been proposed by Crommelin
(1934):

1o © | Gsp)' ! ,.
EW=— o jsp 1
N;k-:§+1 (k=1 ¢ D

In this formula, EW is the mean waiting
M/D/s

service, assuming that the system is stable

time of system before beginning
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steady le.,
this

calculate EW by solving an infinite system of

and is in state, p<1.

Unfortunately, formula needs us to

linear equations, which implies that this is
obviously non—trivial to solve. Consequently,
such a numerical cumbersomeness in
calculating EW has been a strong motivation
accurate
that

have been proposed so far, two of M/M/s

for developing simple and

approximations. Among approximations
based approximations will be used to deal with
M/D/s queue,

approximation will be compared. First, we use

and the results from each
Cosmetatos’ approximation (1975) which is
not accurate for large s. And, later we use the
(1991)

approximation to

approximation proposed by Kimura
which uses the Cosmetatos’
obtain better accuracy for both large s and in
light traffic. Numerical results by these two
approximations will be also shown in later

section.

2. Literature Review

A lot of research has been done on the
asymptotic analysis of the different queuing
systems. Kumar (2008) analyzes asymptotic

approximation in heavy traffic regime for

M/M/s

motivation for this study. The steady state

queue, which gives us a strong

distribution for M/M/s queue is presented by
Cooper (1972). And, Halfin and Whitt (1981)
M/M/s

Shifting gears to M/D/s queue, Cosmetatos
(1975) the

justify  limit  theorems for queue.

presents two formulas for
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approximate evaluation of the average queueing
time not only in the process of M/D/s queue
but in one of D/M/s. Kimura (1991) deals with
refining Cosmetatos’ approximation for the
mean waiting time in M/D/s queue. Although
Cosmetatos’  approximation performs quite
well in heavy traffic, it overestimates the true
value when the number of servers gets large
light.

approximation from Cosmetatos’

or the traffic is Kimura’ s refining
one shows
through his numerical tests that the relative
percentage error is less than 1% for almost all
cases with s<20 and at most 5% for other
cases. In this paper, for the comparison of
approximation  performance, we  consider
and Kimura’ s approximations
(1979)
present a direct approximation from Crommelin
(1934),

approximation for M/D/s

Consmetatos’
for M/D/s system. Boxma et al
and Kimura (1994) shows indirect
queue based on
M/M/s and M/G/s queues. In addition, many
researchers have proposed various
approximate methods for M/G/s cases. Hokstad
(1978) uses the method of supplementary
variables to obtain difference—differential
equations for a joint distribution of the number
of customers in system and remaining service
With

assumptions, Hokstad solves these equations to

times. some additional approximate

generate an approximation for the probability
the

distribution. A few different methods in the

generating function of queue—length

same spirit have been developed by Tijms et
(1981) (1986).
heuristic methods similar to this paper can be
found in Maaloe (1973), Smith (1985) and

al. and Miyazawa Some
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Takahashi (1977). For the GI/G/s case,
however, possible approaches are quite limited:
Halachmi and Franta (1978) and Wu (1990)
develop diffusion approximations for the
queue—length distribution. More recently, Cruz
et al.(2017) use a Bayesian technique and the
sampling/importance resampling method to
estimate the parameters of M/M/s queues.
Park et al.(2018)

stationary joint probability distribution under

derive a product—form

M/M/1 queue to consider the (s, S) inventory
policy. As one of the most recent studies,
Nakamura and Phung—Duc(2024) show exact
and asymptotic analysis of M/M/© queues. In
this study, we focus on asymptotic
approximations for the M/M/s and M/D/s

queues.
3. M/M/s Queues

Consider a system with s servers. Suppose
that the arrival of customers follows a Poisson
process with rate M. Further suppose that each
customer requires an amount of service for a
period, that is exponentially distributed with
These

independent of each other and of the arrival

mean  1/p. service times are
process. Customers who cannot find a free
server on arrival wait in a queue until a
server is free, and always have room to do so.
As soon as a server completes service it
begins work on the customer at the head of
the queue if there is one, and idles otherwise.
Servers are indexed with 1, 2, ..., s, and for

concreteness assume that an arriving customer

who finds two idle servers is served by the
server with the lower index. The number of
customers in the system Q(t), either being
served or waiting for a server at any point of
time ¢, forms a continuous—time Markov chain
on the non—negative integers. In particular it
forms a Birth-Death process with birth rate .
The following result is obtained using standard
Birth-Death process theory.

The steady state probability of k£ customers

in the system is shown in (2):

k
(5]5) Jifk<s
P(Q=k) =y ", 2
775/') , otherwise
s!

where 7 is a constant with
1

" ‘EI (sp)* | (sp)° ®
= K sl(1—p)

The probability that customer will wait in
the system, i.e., @=>s, will be denoted by o
and formulated as follows, which is known as
the Erlang-C formula (4):

(sp)®
I 4)

The mean (5) and variance (6) of the

a =1

steady state customer count @ can be
expressed in terms of a as (from Kumar’ s

notes):

_ ap

_ 2
Var[Q]:ps(1+oc)+—ap+(?(_lp)2a)p 6)
3.1 Asymptotic analysis

As a part of the research, we have

performed simulation studies on the asymptotic
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behavior of the M/M/s queue as the number of
servers s tends to infinity. In order to carry
out this asymptotic analysis as the number of
servers becomes large, we resort to the
following device. We look at a sequence of
systems, with each system in the sequence
having one server more than the previous
system. Clearly, if we can characterize the
limiting behavior of this sequence, we will be
able to analyze the asymptotic behavior of the
system. Every M/M/s queue, and thus, each
system in this sequence, is denoted by three
parameters: the number of servers s, which
we know is increasing sequentially, the arrival
rate )\, and the rate at which customers can
be served by a server with service rate p.
Here, we keep service rate p fixed and p=1,
lLe., we are increasing the number of servers,
not making them work faster. Depending on
how we choose M across systems in the
sequence, we get different limiting behavior.
That is, we can create different asymptotic
regimes based on choice of X. We can pick
(i) By
proportionally, which is also called economies

two regimes: scaling XA and s

of scale, (ii) regime in which the utilization of

the servers approaches the  maximum
permissible. This is called Aeavy (traffic
regime.

In this section, we analyze both economies
of scale and heavy traffic regime with the
simulation settings summarized in Tab. 3—1.

3.2 Economies of scale

To analyze the asymptotic behavior of the
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system as s increases, we build a sequence of
M/M/s queues indexed by n with the number
of servers in the n—th system s, being set to
n. Let @, denote the steady state count in the
n—th system. Fixing p=09, we plot E[Q,]
against n. By fixing p=0.9 we are scaling the
arrival rate A and the number of servers s

proportionally.

Tab. 3—1: Simulation settings

Economies of scale
Input Values
L [0.75, 0.95]
Utﬂlzatpr'l P|__* change with interval of 0.05
Parameter{ Probability [0.05. 0.40]
that customer] change with interval of 0.05
waits « ang )
Start from n = 500
Variable | # servers n| Increase by 500
Stop when n = 5000
E , F +3
Olltpllt l Qn J l Qn J a
where o = v/ Var[ Q|
Heavy-traffic regime
Input Values
Probability
Parameterfthat customer] 0.1
waits o
Start from k=1
Variable # cusltfomers Increase by 1
Stop when k=5
Start from n =500
Variable | # servers n| Increase by 500
Stcip wTen T = i’)OOO
E Qn ’ E Q’u i?)O'
Output N
u by using p, =1—k/v/n

As a reference it also plots n itself. As
easily found from Fig. 3—1, E[Q,] has a slope
that is smaller than 1. We can observe that
the slack n—E[@,], which is the proxy for the
number of idle servers diverges. We also plot
a 3—o confidence interval around the mean
is calculated

count. This confidence interval

using the variance formula. It is evident that
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the confidence interval eventually excludes the
reference n line and diverges from it. That is,
it that @,
all

servers are busy, as n increases. Of course,

becomes increasingly unlikely

exceeds the number of servers n, l.e.,
we relied on explicit computation at p=0.9 to

come up with this explanation.

5000 : T T T T
p=09 a=01
4000 |-
3000 F e
€ =
3 2000 | ek
3 o
A
1000 F g
2
2 EQ
s —-—- EQ-30|
— — EQ+30¢
s
1 1 1 1 1 1 1 L Il
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of servers, s

Fig. 3—1: Economies of scale when p, =p

We the of the

probability of customer waiting in the system,

analyze influence o,
in the behavior of the system. Fig. 3—2 shows
the graphs for two different values of «.

We can observe that for different values of
«, the performance of the system is not
changed much, i.e., o« is not highly sensitive to
the behavior of the system. We carry a data
sensitivity analysis of how E[@Q,] varies for

different values of a as number of servers s

increases. Tab. 3—2 is the results of the
sensitivity analysis (for p=0.9).
It is «clear that for «=0.05 and

comparatively large value of a(= 0.4), the
difference in £[Q,] is not high. This result can
be made sense when we recall the formula of
E[Ql=ps+ap/(1—p) from (5).
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Since we fix a and p(=0.9), E[Q,] is
mostly affected by n, as n increases. That is,
E[Q,] is less sensitive than the case where n
i1s relatively small. In this sensitivity analysis,
the ap/(1—p)=ax0.9/(1—0.9) =9a.

Hence, ap/(1—p) is always in [0.4, 3.6].

term

5000

p=09 a=005

4000

3000 [

Count

1000

| | | | | | | | |
1000 1500 2000 2500 3000 3500
Number of servers, s

5000
T T T I T

p=09 a=04

4000

3000

Count

2000

1000

Y

| | | | | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of servers, s

Fig. 3—2: Economies of scale for two

different values of «

Fig. 3-3
graphs for p=0.9 and p=0.95.

shows the comparison of two

As it is evident from the figure that for
small difference in p there is considerably high
variation in the performance of the system,
Le., p Is sensitive to the performance of the
system. Tab. 3—3 is the data sensitivity
analysis of E[@,] for different values of p

against s (a=0.1).
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Tab. 3—2: Sensitivity analysis of E[@Q.] for p=0.9
«Q S
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.05 450.45 900.45 1350.45 1800.45 | 225045 | 2700.45 3150.45 3600.45 | 405045 | 4500.45
0.1 450.9 900.9 1350.9 1800.9 2250.9 2700.9 3150.9 3600.9 4050.9 4500.9
0.15 451.35 901.35 1351.35 1801.35 | 2251.35 | 2701.35 3151.35 3601.35 | 4051.35| 4501.35

0.2 451.8 901.8 1351.8 1801.8 2251.8 27018 3151.8 3601.8 4051.8 4501.8
0.25 452.25 902.25 135225 | 1802.25 | 2252.25 | 270225 | 315225 | 3602.25| 4052.25 | 4502.25
0.3 452.7 902.7 1352.7 1802.7 2252.7 2702.7 3152.7 3602.7 4052.7 4502.7

0.35 453.15 903.15 135315 | 180315 | 225315| 270315| 315315| 360315| 4053.15| 4503.15
04 453.6 903.6 1353.6 1803.6 2253.6 2703.6 3153.6 3603.6 4053.6 4503.6

Tab. 3—3: Sensitivity analysis of £[Q.] for different values of p
p s
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.75 375.3 750.3 1125.3 1500.3 1875.3 2250.3 2625.3 3000.3 3375.3 3750.3

0.8 400.4 800.4 1200.4 1600.4 2000.4 2400.4 2800.4 3200.4 3600.4 4000.4
0.85 425.6 850.6 12756 1700.6 2125.6 2550.6 2975.6 3400.6 3825.6 4250.6
0.9 450.9 900.9 1350.9 1800.9 2250.9 2700.9 3150.9 3600.9 4050.9 4500.9

0.95 476.9 91.9 1426.9 1901.9 2376.9 2851.9 3326.9 38019 4276.9 47519

3.3 Heavy traffic regime

5pA0 \ \ \ \ \

For heavy traffic regime which is also called 4000 |-
as Halfin and Whitt regime, we use the above 3000
formulas (5) and (6) to calculate £[Q,] and Sam |
Var[@Q,] by using p, =1—k/+/n. In this case, 1000
as the number of servers s—oo, p—1. Fig. o

3—4 represents the graph for k=1 and [ O Y O I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
a=0.1 Number of servers, s

S e e A R

a=01 p=095
4000 ~

3000

Count

2000

1000 [

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number ot servers, s

Fig. 3—3: Economies of scale for two

different values of p
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We also analyze the system for different 6000 ‘ ‘ ‘

values of k. As in Fig. 3—5, we observe that 5000 |
the constant k£ has a significant effect on the
performance of the system. The heavy traffic
regime is appropriate only for k=1. It is
evident from Fig. 3—4 that the confidence
interval of the count E[Q,|+3c(Q,) always

contains the reference line s, i.e., the number 0

4000 -

3000

Count

2000

1000

of servers is never more (or less) than fixed Lo

number

below) the mean count. We can see that as k

of standard deviations above (or

0 500 1000 1500 2000
Number of servers, s

increases, the reference line s is diverging

from the count.

6000

5000

4000

3000

Count

2000

1000

5000

4000

3000

Count

2000

1000

T T 6000

2500 3000 3500 4000 4500 5000

Fig. 3—4: Heavy traffic regime p, =1—1/vn
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4000
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2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000

Fig. 3—5: Heavy traffic regime for different &
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4. M/D/s Queues

41
queues

Expected waiting time in M/D/s

Consider the M/D/s queuing system with s
homogeneous parallel servers, independent and
identically distributed exponential inter—arrival
times and constant service time. The waiting
room is infinite, 1i.e., there is no upper bound
service policy 1is
Sticking the

conventions, we denote X and p as the arrival

on queue length, and

first—come first—served. to

and service rates, respectively. Therefore,

traffic intensity is given as p=$. Let

EW(M/D/s) denote the mean waiting time in
this system assuming that the system is in
steady state, i.e., The calculation of

EW(M/Ds)

therefore

p<1.
1s numerically cumbersome and
lot of

approximations have been derived. Among

a simple and accurate

these approximations, Cosmetatos’

approximation (1975),

EWOM/D/s) = [1+ ()9 ()| EWM/ M)

where
o) = (s—1)(v4+5s5—2)
5 165
1—p
(=12
9(p 5
1s evaluated as having the best quality for
most of the practical purposes. Here,

EW(M/M]/s) denote the mean waiting time in
the corresponding M/M/s queue with same

mean arrival rate and service time as the
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M/D/s queue.
We know that

JeS G s T
G| 2 )

slsp(1—p)?

EW(M/M/s) =

which can be written as
o«
sp(1—p)

where o refers to the probability that a

EW(M/M/s) =

customer will wait and is calculated using the
formula (4).

Thus, for given values of «, p, s and u we
can easily calculate EW(M/M/s) and hence
can find out expected waiting time in queue

for the corresponding M/D/s queue.

4.2 Expected steady state customer
count in M/D/s system

We can use the aforementioned equation for
calculating EW(M/D/s) find the
expected steady state customer of
M/D/s system using Little' s Law. Since EW

to out

count

is the mean waiting time, W= EW+%. By

Little’ s Law,
EQ(M/D/s) =X+ W

A A

=5 (14 f(s)g(p) [EW(M/ M] s ) S

which can again be calculated for given
values of «, p, s and p using spreadsheet or
other computational tools.

We perform simulations to find out the
approximation with  different
the
parameters and the results are displayed in

Fig. 4—-1 and Fig. 4-2. Fig. 4—1 show that

behavior of

varying  values of aforementioned
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Number ot servers, s

Fig. 4—1: Cosmetatos’ approximation for

Heavy traffic regime
Cosmetatos’ approximation performs quite
well when the number of servers s is small
and traffic intensity is heavy. However, it also
shows that for large number of servers the
approximation overestimates the true value (as
mentioned by Kimura(1991)).

Fig. 4-2 the

Cosmetatos’  approximation for

of

low traffic

shows performance

intensity. Again it can be seen that the
approximation overestimates the true value.
4.3 Modified Cosmetatos’ approximation
Kimura(1991)
Cosmetatos’
the

proposed

propose  modifications in
approximation to take care of
The
the
asymptotically exact value of expected waiting
(and the

expected steady state count) when s—oo or

two defects mentioned above.

approximation gives

time In queue simultaneously

p—0 or p—1. Even for some other values of
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10 15 20
Number of servers, s

30

Fig. 4—2. Cosmetatos’ approximation for

low traffic intensity

s and p it gives a good approximation. The

approximation is given as:
EW (M Dfs) = 5 [1+7(5)g )| EW(/ M)

where h(s,p) is a correction function given
by

E(syx) = 17exp(f

—_

-
__ry
I=p
The functions a(p) and b(s) are defined as
a(p)=—2B06
[9(p)n(By.p)]?

— s—1
b(s) = (s+1)f(s)é(s,ay)

and g,
through this relation: « 3% =25.6.
Kimura(1991) the

approximations are fairly insensitive to these

n(y,p)=1*exp( ),yZO

Here, a; are constants linked

also suggests that

constants though performs best when «a; =2.2

and §, =341 (we use this value throughout in
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Fig. 4—3: Modified Cosmetatos’
approximation vs. Cosmetatos’ approximation
for heavy traffic regime
simulation in order to get the best

approximation).

Using EW (M/D]s)
the
Expected Steady state customer count
M/D/s system:

EQ(M/D]s)

% [1+f(s)g(p)n(s,p) | EW(M/M]s) +%

and Little’ s law we

derive following  approximation  for

n

5000 T T T T T T

a=01p=095 /
4000 e
//

3000 P
O
(&) /

2000 | :

///
1000 ya
o

=3
— — Modified approx. |7

O Il I} 1 1 1 1 1 Il Il
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of servers, s

Fig. 4—4: Performance of modified
Cosmetatos’ approximation for large s under

heavy traffic regime
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We also simulate the modified Cosmetatos’
approximation for different values of servers
and p, and compare them to the results we
approximation. Fig.

4-3 shows that the modified Cosmetatos’

obtained from Cosmetatos’

approximation gives good approximation for the
steady state count of the system even when
of is large against

the number servers

Cosmetatos’  approximations which becomes
increasingly diverge with increasing number of
servers (which appears to be violating the
concept of economies of scale). The modified
Cosmetatos’ approximation also holds (with
small error) even when the number of servers

are too large as shown in Fig. 4—4.

5. Conclusions

Throughout this
asymptotic approximation analysis for M/M/s
and M/D/s queues. For the M/M/s queue, we
observed

study, we performed

“Economies of Scale” , i.e., under
the fixed utilization p and the fixed probability
that customer wait in system, «, how the
average system size vary according to the
increasing. Simulation
the
number of servers who are idling increased,
that is, the slack n—FE[Q,] diverged.
through the
probability a under the M/M/s system, a was

number of servers s
results showed that as s increases,
In
addition, changing waiting
not highly sensitive to the behavior of the
system size. And, it was shown that using
p,=1—k/ vn to handle Heavy-—traffic regime

was only appropriate for k=1 by observing
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the effect on the performance of the system
with different values of k. For the M/D/s

queue, we used two approximations, both of

which are M/M/s based approximations.
Simulations and comparison of these two
approximations showed that Cosmetatos’

approximation performs quite well when the
number of servers is small and traffic intensity
is heavy, but it overestimates the true value
for the large number of servers. Meanwhile,
the modified approximation gave good results
for the steady state count of the system
although the number of servers becomes large.

M/M/s and M/D/s queueing models offer
valuable

insights into the management and

optimization of service systems In various

M/M/s model

environments where adaptability is critical due

industries. 1s more suited to

to high variability in both demand and service

times, such as call centers, hospitals, and

(e.g., retailers,

banks, etc,). In contrast, M/D/s model excels

customer service centers

in predictable environments where efficiency
and consistency are the primary goals such as
manufacturing and assembly lines, fast—food

restaurants, transportation and logistics. In
addition, M/M/s models often require more
which

increase operational costs but also improve

dynamic resource allocation, can
service levels during peak times, while M/D/s
models allow for more streamlined operations,
potentially reducing costs, but require a stable
environment ~ where  service times are
consistent. This study is deemed to contribute
to enhancing service levels by enabling more

accurate predictions of customer wait times
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based on industry characteristics in actual
service areas where queuing theory can be
by  preparing

countermeasures accordingly.

applied, and appropriate
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