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요약

Abstract
ㄴ

 This paper deals with asymptotic approximations analysis of M/M/s and M/D/s queues. For M/M/s queue, we 

observe “economies of scale” under the fixed utilization  and the fixed probability  that customer waits in 

system, how the average system size vary according to the number of servers  increasing. Simulation results 

show that as  increases, the number of servers who are idling increases, that is, the slack     diverges. 

In addition, through changing the waiting probability  under the M/M/s system,  was not highly sensitive to the 

behavior of the system size. And, it is shown that using     to handle heavy-traffic regime is only appropriate 

for    by observing the effect on the performance of the system with different values of . For the M/D/s queue, 

two approximations are used to evaluate the expected system size under the fixed  and . Simulations and comparison 

of these two approximations show that Cosmetatos’approximation performs quite well when the number of servers 

is small and traffic intensity is heavy, but it overestimates the true value for the large number of servers. Meanwhile, 

the modified approximation gives good results for the steady state count of the system although the number of 

servers grows large. 
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1. Introduction

Multi-server queue has been important 

models for evaluating the performance of 

various service systems (Jeong, 2018; Lee, 

2023; Wang et al., 2020) in many fields such 

as computer/communications, transportation, 

manufacturing and so on. Call center (Shim, 

2022) is one of the simplest and most widely 

used such models with  operators (servers) 

and arrival rate . Corresponding to the 

systems such as call centers that have 

multi-servers with any service distribution, 

and customers arriving with Poisson process, 

the analysis of multi-server queueing systems 

has been paid attention. In this study, 

asymptotic approximations analysis under 

heavy traffic regime is dealt. Heavy traffic is 

the regime in which the utilization of the 

servers approaches the maximum permissible, 

i.e.,  goes to 1 as close as possible, but this 

does not imply that  is exactly equal to 1. In 

order to analyze asymptotic approximation 

under the heavy traffic regime, we focus on 

the two systems that have different service 

distributions, respectively, one of which has 

independent and identical exponential service 

time, so-called M/M/s queue, and the other of 

which has deterministic service time (i.e., 

constant service time for all customers), 

so-called M/D/s queue. Note that both 

systems have independent and identical 

exponential inter-arrival times, i.e., Poisson 

arrival process. We carry out the 

approximation in the regime where the number 

of servers  becomes increasingly large, the 

utilization  has the value very close to one, 

the expected value of system size increases 

according to  . The point here is to observe 

the expected value of system size as  

increases under the assumption of system 

stability with fixing close to one and fixing the 

waiting probability in system denoted by  . 

For the numerical approach of M/M/s queue, 

this research basically follows the mechanism 

that was used in Kumar (2008) in which the 

asymptotic analysis of this system was 

conducted in heavy traffic regime. M/D/s 

queue has no difference from M/M/s queue 

except for having the deterministic service 

time instead of exponential one, and it is often 

the case that is accepted as an approximation 

to some real system, either because the 

distribution of service times (or inter-arrival 

times) has a very small coefficient of variation 

or in order to obtain a bound on some 

measure of practical interest; see Cosmetatos 

(1975). However, in practice, dealing with 

M/D/s queue that has exact formulas such as 

expected value of system size and mean 

waiting time before starting service is 

non-trivial, as it is shown in the formulation 

(1) that has been proposed by Crommelin 

(1934): 

 



 

∞


 

∞ 









 


   (1)

In this formula,  is the mean waiting 

time of M/D/s system before beginning 

service, assuming that the system is stable 
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and is in steady state, i.e.,  . 

Unfortunately, this formula needs us to 

calculate  by solving an infinite system of 

linear equations, which implies that this is 

obviously non-trivial to solve. Consequently, 

such a numerical cumbersomeness in 

calculating  has been a strong motivation 

for developing simple and accurate 

approximations. Among approximations that 

have been proposed so far, two of M/M/s 

based approximations will be used to deal with 

M/D/s queue, and the results from each 

approximation will be compared. First, we use 

Cosmetatos’ approximation (1975) which is 

not accurate for large  . And, later we use the 

approximation proposed by Kimura (1991) 

which uses the Cosmetatos’ approximation to 

obtain better accuracy for both large  and in 

light traffic. Numerical results by these two 

approximations will be also shown in later 

section. 

2. Literature Review

A lot of research has been done on the 

asymptotic analysis of the different queuing 

systems. Kumar (2008) analyzes asymptotic 

approximation in heavy traffic regime for 

M/M/s queue, which gives us a strong 

motivation for this study. The steady state 

distribution for M/M/s queue is presented by 

Cooper (1972). And, Halfin and Whitt (1981) 

justify limit theorems for M/M/s queue. 

Shifting gears to M/D/s queue, Cosmetatos 

(1975) presents two formulas for the 

approximate evaluation of the average queueing 

time not only in the process of M/D/s queue 

but in one of D/M/s. Kimura (1991) deals with 

refining Cosmetatos’ approximation for the 

mean waiting time in M/D/s queue. Although 

Cosmetatos’ approximation performs quite 

well in heavy traffic, it overestimates the true 

value when the number of servers gets large 

or the traffic is light. Kimura’s refining 

approximation from Cosmetatos’ one shows 

through his numerical tests that the relative 

percentage error is less than 1% for almost all 

cases with    and at most 5% for other 

cases. In this paper, for the comparison of 

approximation performance, we consider  

Consmetatos’ and Kimura’s approximations 

for M/D/s system. Boxma et al. (1979) 

present a direct approximation from Crommelin 

(1934), and Kimura (1994) shows indirect 

approximation for M/D/s queue based on 

M/M/s and M/G/s queues. In addition, many 

researchers have proposed various 

approximate methods for M/G/s cases. Hokstad 

(1978) uses the method of supplementary 

variables to obtain difference-differential 

equations for a joint distribution of the number 

of customers in system and remaining service 

times. With some additional approximate 

assumptions, Hokstad solves these equations to 

generate an approximation for the probability 

generating function of the queue-length 

distribution. A few different methods in the 

same spirit have been developed by Tijms et 

al. (1981) and Miyazawa (1986). Some 

heuristic methods similar to this paper can be 

found in Maaloe (1973), Smith (1985) and 
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Takahashi (1977). For the GI/G/s case, 

however, possible approaches are quite limited: 

Halachmi and Franta (1978) and Wu (1990) 

develop diffusion approximations for the 

queue-length distribution. More recently, Cruz 

et al.(2017) use a Bayesian technique and the 

sampling/importance resampling method to 

estimate the parameters of M/M/s queues. 

Park et al.(2018) derive a product-form 

stationary joint probability distribution under 

M/M/1 queue to consider the (s, S) inventory 

policy. As one of the most recent studies, 

Nakamura and Phung-Duc(2024) show exact 

and asymptotic analysis of M/M/∞ queues. In 

this study, we focus on asymptotic 

approximations for the M/M/s and M/D/s 

queues.  

3. M/M/s Queues

Consider a system with  servers. Suppose 

that the arrival of customers follows a Poisson 

process with rate . Further suppose that each 

customer requires an amount of service for a 

period, that is exponentially distributed with 

mean . These service times are 

independent of each other and of the arrival 

process. Customers who cannot find a free 

server on arrival wait in a queue until a 

server is free, and always have room to do so. 

As soon as a server completes service it 

begins work on the customer at the head of 

the queue if there is one, and idles otherwise. 

Servers are indexed with 1, 2, ..., s, and for 

concreteness assume that an arriving customer 

who finds two idle servers is served by the 

server with the lower index. The number of 

customers in the system , either being 

served or waiting for a server at any point of 

time , forms a continuous-time Markov chain 

on the non-negative integers. In particular it 

forms a Birth–Death process with birth rate . 

The following result is obtained using standard 

Birth–Death process theory.

The steady state probability of  customers 

in the system is shown in (2):

 












 if  




 

       (2)

where  is a constant with

    













         (3)

The probability that customer will wait in 

the system, i.e., ≥ , will be denoted by  

and formulated as follows, which is known as 

the Erlang–C formula (4):

  


              (4)

The mean (5) and variance (6) of the 

steady state customer count  can be 

expressed in terms of  as (from Kumar’s 

notes):

 


             (5)

 


    (6)

3.1 Asymptotic analysis

As a part of the research, we have 

performed simulation studies on the asymptotic 
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behavior of the M/M/s queue as the number of 

servers  tends to infinity. In order to carry 

out this asymptotic analysis as the number of 

servers becomes large, we resort to the 

following device. We look at a sequence of 

systems, with each system in the sequence 

having one server more than the previous 

system. Clearly, if we can characterize the 

limiting behavior of this sequence, we will be 

able to analyze the asymptotic behavior of the 

system. Every M/M/s queue, and thus, each 

system in this sequence, is denoted by three 

parameters: the number of servers , which 

we know is increasing sequentially, the arrival 

rate , and the rate at which customers can 

be served by a server with service rate . 

Here, we keep service rate  fixed and  , 

i.e., we are increasing the number of servers, 

not making them work faster. Depending on 

how we choose  across systems in the 

sequence, we get different limiting behavior. 

That is, we can create different asymptotic 

regimes based on choice of . We can pick 

two regimes: (i) By scaling  and  

proportionally, which is also called economies 

of scale, (ii) regime in which the utilization of 

the servers approaches the maximum 

permissible. This is called heavy traffic 

regime.

In this section, we analyze both economies 

of scale and heavy traffic regime with the 

simulation settings summarized in Tab. 3-1.

3.2 Economies of scale

To analyze the asymptotic behavior of the 

system as   increases, we build a sequence of 

M/M/s queues indexed by  with the number 

of servers in the -th system  being set to 

. Let  denote the steady state count in the 

-th system. Fixing  , we plot     

against . By fixing    we are scaling the 

arrival rate  and the number of servers  

proportionally.

Economies of scale

Input Values

Parameter

Utilization 
   [0.75, 0.95]
   * change with interval of 0.05

Probability 
that customer 

waits  

[0.05, 0.40]
* change with interval of 0.05

Variable # servers 
Start from  
Increase by 500
Stop when  

Output
   ,   ±

where  
Heavy-traffic regime

Input Values

Parameter
Probability 

that customer 
waits  

0.1

Variable
# customers 



Start from   
Increase by 1
Stop when  

Variable # servers 
Start from  
Increase by 500
Stop when  

Output
   ,   ±

by using    

Tab. 3-1: Simulation settings

As a reference it also plots  itself. As 

easily found from Fig. 3-1,     has a slope 

that is smaller than 1. We can observe that 

the slack    , which is the proxy for the 

number of idle servers diverges. We also plot 

a  confidence interval around the mean 

count. This confidence interval is calculated 

using the variance formula. It is evident that 
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the confidence interval eventually excludes the 

reference  line and diverges from it. That is, 

it becomes increasingly unlikely that  

exceeds the number of servers , i.e., all 

servers are busy, as  increases. Of course, 

we relied on explicit computation at   to 

come up with this explanation.

Fig. 3-1: Economies of scale when  

We analyze the influence of  , the 

probability of customer waiting in the system, 

in the behavior of the system. Fig. 3-2 shows 

the graphs for two different values of .

We can observe that for different values of 

, the performance of the system is not 

changed much, i.e.,  is not highly sensitive to 

the behavior of the system. We carry a data 

sensitivity analysis of how     varies for 

different values of  as number of servers  

increases. Tab. 3-2 is the results of the 

sensitivity analysis (for  ).

It is clear that for    and 

comparatively large value of (= 0.4), the 

difference in     is not high. This result can 

be made sense when we recall the formula of 

  from (5).

Since we fix  and (=0.9),     is 

mostly affected by , as  increases. That is, 

    is less sensitive than the case where  

is relatively small. In this sensitivity analysis, 

the term  ×   . 

Hence,  is always in [0.4, 3.6]. 

Fig. 3-2: Economies of scale for two 

different values of 

Fig. 3-3 shows the comparison of two 

graphs for   and   . 

As it is evident from the figure that for 

small difference in  there is considerably high 

variation in the performance of the system, 

i.e.,  is sensitive to the performance of the 

system. Tab. 3-3 is the data sensitivity 

analysis of     for different values of  

against  (  ).
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3.3 Heavy traffic regime

For heavy traffic regime which is also called 

as Halfin and Whitt regime, we use the above 

formulas (5) and (6) to calculate     and 

    by using   . In this case, 

as the number of servers →∞, →. Fig. 

3-4 represents the graph for   and 

  .

Fig. 3-3: Economies of scale for two 

different values of 

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.05 450.45 900.45 1350.45 1800.45 2250.45 2700.45 3150.45 3600.45 4050.45 4500.45

0.1 450.9 900.9 1350.9 1800.9 2250.9 2700.9 3150.9 3600.9 4050.9 4500.9

0.15 451.35 901.35 1351.35 1801.35 2251.35 2701.35 3151.35 3601.35 4051.35 4501.35

0.2 451.8 901.8 1351.8 1801.8 2251.8 2701.8 3151.8 3601.8 4051.8 4501.8

0.25 452.25 902.25 1352.25 1802.25 2252.25 2702.25 3152.25 3602.25 4052.25 4502.25

0.3 452.7 902.7 1352.7 1802.7 2252.7 2702.7 3152.7 3602.7 4052.7 4502.7

0.35 453.15 903.15 1353.15 1803.15 2253.15 2703.15 3153.15 3603.15 4053.15 4503.15

0.4 453.6 903.6 1353.6 1803.6 2253.6 2703.6 3153.6 3603.6 4053.6 4503.6

Tab. 3-2: Sensitivity analysis of     for  

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.75 375.3 750.3 1125.3 1500.3 1875.3 2250.3 2625.3 3000.3 3375.3 3750.3

0.8 400.4 800.4 1200.4 1600.4 2000.4 2400.4 2800.4 3200.4 3600.4 4000.4

0.85 425.6 850.6 1275.6 1700.6 2125.6 2550.6 2975.6 3400.6 3825.6 4250.6

0.9 450.9 900.9 1350.9 1800.9 2250.9 2700.9 3150.9 3600.9 4050.9 4500.9

0.95 476.9 951.9 1426.9 1901.9 2376.9 2851.9 3326.9 3801.9 4276.9 4751.9

Tab. 3-3: Sensitivity analysis of     for different values of 
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We also analyze the system for different 

values of . As in Fig. 3-5, we observe that 

the constant  has a significant effect on the 

performance of the system. The heavy traffic 

regime is appropriate only for  . It is 

evident from Fig. 3-4 that the confidence 

interval of the count   ± always 

contains the reference line  , i.e., the number 

of servers is never more (or less) than fixed 

number of standard deviations above (or 

below) the mean count. We can see that as  

increases, the reference line  is diverging 

from the count.

Fig. 3-4: Heavy traffic regime  

Fig. 3-5: Heavy traffic regime for different 
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4. M/D/s Queues

4.1 Expected waiting time in M/D/s 

queues

Consider the M/D/s queuing system with  

homogeneous parallel servers, independent and 

identically distributed exponential inter-arrival 

times and constant service time. The waiting 

room is infinite,  i.e., there is no upper bound 

on queue length, and service policy is 

first-come first-served. Sticking to the 

conventions, we denote  and  as the arrival 

and service rates, respectively. Therefore, 

traffic intensity is given as 


. Let 

 denote the mean waiting time in 

this system assuming that the system is in 

steady state, i.e.,  . The calculation of 

 is numerically cumbersome and 

therefore a lot of simple and accurate 

approximations have been derived. Among 

these approximations, Cosmetatos’ 

approximation (1975), 

≅ 


 

where                                        

 

 


 

 



is evaluated as having the best quality for 

most of the practical purposes. Here, 

 denote the mean waiting time in 

the corresponding M/M/s queue with same 

mean arrival rate and service time as the 

M/D/s queue. 

We know that

 







 








 





which can be written as

 



where  refers to the probability that a 

customer will wait and is calculated using the 

formula (4).

Thus, for given values of , ,  and  we 

can easily calculate  and hence 

can find out expected waiting time in queue 

for the corresponding M/D/s queue.

4.2 Expected steady state customer 

count in M/D/s system

We can use the aforementioned equation for 

calculating  to find out the 

expected steady state customer count of 

M/D/s system using Little’s Law. Since  

is the mean waiting time, 


. By 

Little’s Law,

  ∙

 


 



which can again be calculated for given 

values of , ,  and  using spreadsheet or 

other computational tools.

We perform simulations to find out the 

behavior of approximation with different 

varying values of the aforementioned 

parameters and the results are displayed in 

Fig. 4-1 and Fig. 4-2. Fig. 4-1 show that
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Fig. 4-1: Cosmetatos’ approximation for 

Heavy traffic regime

Cosmetatos’ approximation performs quite 

well when the number of servers  is small 

and traffic intensity is heavy. However, it also 

shows that for large number of servers the 

approximation overestimates the true value (as 

mentioned by Kimura(1991)).

Fig. 4-2 shows the performance of 

Cosmetatos’ approximation for low traffic 

intensity. Again it can be seen that the 

approximation overestimates the true value.

4.3 Modified Cosmetatos’ approximation

Kimura(1991) propose modifications in 

Cosmetatos’ approximation to take care of 

the two defects mentioned above. The 

proposed approximation gives the 

asymptotically exact value of expected waiting 

time in queue (and simultaneously the 

expected steady state count) when →∞ or 

→ or →. Even for some other values of

Fig. 4-2. Cosmetatos’ approximation for 

low traffic intensity

 and  it gives a good approximation. The 

approximation is given as:

′ ≅ 


 

where  is a correction function given 

by

       

      

exp

    ≥ 

       exp

   ≥ 

The functions  and  are defined as

      
 




 

      



Here,  and  are constants linked 

through this relation: 
 .

Kimura(1991) also suggests that the 

approximations are fairly insensitive to these 

constants though performs best when   

and   (we use this value throughout in 
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Fig. 4-3: Modified Cosmetatos’ 

approximation vs. Cosmetatos’ approximation 

for heavy traffic regime

simulation in order to get the best 

approximation).

Using ′  and Little’s law we 

derive the following approximation for 

Expected Steady state customer count in 

M/D/s system:



 


 



Fig. 4-4: Performance of modified 

Cosmetatos’ approximation for large  under 

heavy traffic regime

We also simulate the modified Cosmetatos’ 

approximation for different values of servers 

and ,  and compare them to the results we 

obtained from Cosmetatos’ approximation. Fig. 

4-3 shows that the modified Cosmetatos’ 

approximation gives good approximation for the 

steady state count of the system even when 

the number of servers is large against 

Cosmetatos’ approximations which becomes 

increasingly diverge with increasing number of 

servers (which appears to be violating the 

concept of economies of scale). The modified 

Cosmetatos’ approximation also holds (with 

small error) even when the number of servers 

are too large as shown in Fig. 4-4.

5. Conclusions

Throughout this study, we performed 

asymptotic approximation analysis for M/M/s 

and M/D/s queues. For the M/M/s queue, we 

observed “Economies of Scale”, i.e., under 

the fixed utilization  and the fixed probability 

that customer wait in system,  , how the 

average system size vary according to the 

number of servers  increasing. Simulation 

results showed that as   increases, the 

number of servers who are idling increased, 

that is, the slack     diverged. In 

addition, through changing the waiting 

probability  under the M/M/s system,  was 

not highly sensitive to the behavior of the 

system size. And, it was shown that using 

   to handle Heavy-traffic regime 

was only appropriate for   by observing 
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the effect on the performance of the system 

with different values of . For the M/D/s 

queue, we used two approximations, both of 

which are M/M/s based approximations. 

Simulations and comparison of these two 

approximations showed that Cosmetatos’ 

approximation performs quite well when the 

number of servers is small and traffic intensity 

is heavy, but it overestimates the true value 

for the large number of servers. Meanwhile, 

the modified approximation gave good results 

for the steady state count of the system 

although the number of servers becomes large.

M/M/s and M/D/s queueing models offer 

valuable insights into the management and 

optimization of service systems in various 

industries. M/M/s model is more suited to 

environments where adaptability is critical due 

to high variability in both demand and service 

times, such as call centers, hospitals, and 

customer service centers (e.g., retailers, 

banks, etc,). In contrast, M/D/s model excels 

in predictable environments where efficiency 

and consistency are the primary goals such as 

manufacturing and assembly lines, fast-food 

restaurants, transportation and logistics. In 

addition, M/M/s models often require more 

dynamic resource allocation, which can 

increase operational costs but also improve 

service levels during peak times, while M/D/s 

models allow for more streamlined operations, 

potentially reducing costs, but require a stable 

environment where service times are 

consistent. This study is deemed to contribute 

to enhancing service levels by enabling more 

accurate predictions of customer wait times 

based on industry characteristics in actual 

service areas where queuing theory can be 

applied, and by preparing appropriate 

countermeasures accordingly.
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M/M/s와 M/D/s 대기행렬의 점근 근사법 분석을 위한 시뮬레이션 
연구

이진호*

초 록
ㄴ

  본 연구는 M/M/s와 M/D/s 대기행렬의 점근 근사법 분석을 수행한다. M/M/s 대기행렬 분석을 위해, 

활용률 와 고객의 시스템 대기확률 가 특정값을 가질 때 서버수 의 증가에 따라 평균 시스템 대기자

의 크기가 변화하는 양상을 통해 “규모의 경제”를 관찰하였다. 시뮬레이션 결과, 가 증가함에 따라 

유휴시간을 갖는 서버의 수인   은 발산함을 보여주었다. 그리고 고객의 수 의 변화에 따른 시

스템 성능을 관찰한 결과, heavy-traffic regime(활용률이 점점 증가하는 상태)을 살펴보기 위하여 

  을 이용하는 것은 고객의 수가 1(  )인 경우에만 유효함을 확인하였다. M/D/s 대기행렬

의 경우 고정된 와  하에서 평균 시스템 대기자의 크기 분석을 위해 두 가지의 근사법을 이용하였다. 

시뮬레이션 및 비교 분석 결과, 서버의 수가 작고 heavy-traffic인 경우에는 Cosmetatos 근사법이 좋

은 성과를 보여 주지만, 서버의 수가 큰 경우에는 실제값을 과대평가하는 경향이 있음을 보여주었다. 반

면에 수정 근사법(modified approximation)은 서버의 수가 증가할 때에도 시스템 안정상태에 대한 보

다 정확한 근사치를 제공하였다. 

핵심어: M/M/s, M/D/s, 대기행렬, 점근 근사법, Cosmetatos 근사법, 규모의 경제, 고-교통량 영역
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