DOI QR코드

DOI QR Code

High-resolution magnetic resonance imaging of teeth and periodontal tissues using a microscopy coil

  • Shinya Kotaki (Department of Oral Radiology, Osaka Dental University) ;
  • Hiroshi Watanabe (Department of Dental Radiology and Radiation Oncology, Tokyo Medical and Dental University) ;
  • Junichiro Sakamoto (Department of Oral Radiology, Osaka Dental University) ;
  • Ami Kuribayashi (Department of Dental Radiology and Radiation Oncology, Tokyo Medical and Dental University) ;
  • Marino Araragi (Department of Oral Radiology, Osaka Dental University) ;
  • Hironori Akiyama (Department of Oral Radiology, Osaka Dental University) ;
  • Yoshiko Ariji (Department of Oral Radiology, Osaka Dental University)
  • Received : 2024.03.15
  • Accepted : 2024.05.28
  • Published : 2024.09.30

Abstract

Purpose: This study aimed to assess the performance of 2-dimensional (2D) imaging with microscopy coils in delineating teeth and periodontal tissues compared with conventional 3-dimensional(3D) imaging on a 3 T magnetic resonance imaging (MRI) unit. Materials and Methods: Twelve healthy participants (4 men and 8 women; mean age: 25.6 years; range: 20-52 years) with no dental symptoms were included. The left mandibular first molars and surrounding periodontal tissues were examined using the following 2 sequences: 2D proton density-weighted (PDw) images and 3D enhanced T1 high-resolution isotropic volume excitation (eTHRIVE) images. Two-dimensional MRI images were taken using a 3 T MRI unit and a 47 mm microscopy coil, while 3D MRI imaging used a 3 T MRI unit and head-neck coil. Oral radiologists assessed dental and periodontal structures using a 4-point Likert scale. Inter- and intra-observer agreement was determined using the weighted kappa coefficient. The Wilcoxon signed-rank test was used to compare 2D-PDw and 3D-eTHRIVE images. Results: Qualitative analysis showed significantly better visualization scores for 2D-PDw imaging than for 3D-eTHRIVE imaging (Wilcoxon signed-rank test). 2D-PDw images provided improved visibility of the tooth, root dental pulp, periodontal ligament, lamina dura, coronal dental pulp, gingiva, and nutrient tract. Inter-observer reliability ranged from moderate agreement to almost perfect agreement, and intra-observer agreement was in a similar range. Conclusion: Two-dimensional-PDw images acquired using a 3 T MRI unit and microscopy coil effectively visualized nearly all aspects of teeth and periodontal tissues.

Keywords

Acknowledgement

We thank Prof. Kosuke Kashiwagi, Dr. Yusuke Tsumori, and Dr. Keisuke Hori for statistical software advice, and Mr. Toshiyuki Zaike and Mr. Toshiki Takumi for advice on MRI operation.

References

  1. Sumi M, Ichikawa Y, Katayama I, Tashiro S, Nakamura T. Diffusion-weighted MR imaging of ameloblastomas and keratocystic odontogenic tumors: differentiation by apparent diffusion coefficients of cystic lesions. AJNR Am J Neuroradiol 2008; 29: 1897-901. https://doi.org/10.3174/ajnr.A1266
  2. Srinivasan K, Seith Bhalla A, Sharma R, Kumar A, Roychoudhury A, Bhutia O. Diffusion-weighted imaging in the evaluation of odontogenic cysts and tumours. Br J Radiol 2012; 85: e864-70.
  3. Sakamoto J, Kuribayashi A, Kotaki S, Fujikura M, Nakamura S, Kurabayashi T. Application of diffusion kurtosis imaging to odontogenic lesions: analysis of the cystic component. J Magn Reson Imaging 2016; 44: 1565-71. https://doi.org/10.1002/jmri.25307
  4. Kotaki S, Sakamoto J, Kretapirom K, Supak N, Sumi Y, Kurabayashi T. Diffusion tensor imaging of the inferior alveolar nerve using 3T MRI: a study for quantitative evaluation and fibre tracking. Dentomaxillofac Radiol 2016; 45: 20160200.
  5. Kurabayashi T, Ohbayashi N, Sakamoto J, Nakamura S. Usefulness of MR imaging for odontogenic tumors. Odontology 2021; 109: 1-10. https://doi.org/10.1007/s10266-020-00559-z
  6. Xiong X, Ye Z, Tang H, Wei Y, Nie L, Wei X, et al. MRI of temporomandibular joint disorders: recent advances and future directions. J Magn Reson Imaging 2021; 54: 1039-52. https://doi.org/10.1002/jmri.27338
  7. Wamasing N, Yomtako S, Watanabe H, Sakamoto J, Kayamori K, Kurabayashi T. The magnetic resonance imaging characteristics of radicular cysts and granulomas. Dentomaxillofac Radiol 2023; 52: 20220336.
  8. Nakamura T. Dental MRI: a road beyond CBCT. Eur Radiol 2020; 30: 6389-91.
  9. Johannsen KM, Fuglsig JM, Matzen LH, Christensen J, Spin-Neto R. Magnetic resonance imaging in the diagnosis of periodontal and periapical disease. Dentomaxillofac Radiol 2023; 52: 20230184.
  10. Budak MJ, Weir-McCall JR, Yeap PM, White RD, Waugh SA, Sudarshan TA, et al. High-resolution microscopy-coil MR imaging of skin tumors: techniques and novel clinical applications. Radiographics 2015; 35: 1077-90. https://doi.org/10.1148/rg.2015140142
  11. Dobbs NW, Budak MJ, White RD, Zealley IA. MR-eye: high-resolution microscopy coil MRI for the assessment of the orbit and periorbital structures, part 1: technique and anatomy. AJNR Am J Neuroradiol 2020; 41: 947-50. https://doi.org/10.3174/ajnr.A6495
  12. Dobbs NW, Budak MJ, White RD, Zealley IA. MR-eye: high-resolution microscopy coil MRI for the assessment of the orbit and periorbital structures, part 2: clinical applications. AJNR Am J Neuroradiol 2021; 42: 1184-9. https://doi.org/10.3174/ajnr.A7080
  13. Idiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. J Endod 2011; 37: 745-52. https://doi.org/10.1016/j.joen.2011.02.022
  14. Gaudino C, Cosgarea R, Heiland S, Csernus R, Beomonte Zobel B, Pham M, et al. MR-imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT. Eur Radiol 2011; 21: 2575-83. https://doi.org/10.1007/s00330-011-2209-0
  15. Tymofiyeva O, Rottner K, Jakob PM, Richter EJ, Proff P. Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clin Oral Investig 2010; 14: 169-76. https://doi.org/10.1007/s00784-009-0277-1
  16. Flugge T, Hovener JB, Ludwig U, Eisenbeiss AK, Spittau B, Hennig J, et al. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences. Eur Radiol 2016; 26: 4616-23. https://doi.org/10.1007/s00330-016-4254-1
  17. Juerchott A, Sohani M, Schwindling FS, Jende JME, Kurz FT, Rammelsberg P, et al. Comparison of non-contrast-enhanced dental magnetic resonance imaging and cone-beam computed tomography in assessing the horizontal and vertical components of furcation defects in maxillary molars: an in vivo feasibility study. J Clin Periodontol 2020; 47: 1485-95. https://doi.org/10.1111/jcpe.13374
  18. Juerchott A, Sohani M, Schwindling FS, Jende JME, Kurz FT, Rammelsberg P, et al. In vivo accuracy of dental magnetic resonance imaging in assessing maxillary molar furcation involvement: a feasibility study in humans. J Clin Periodontol 2020; 47: 809-15.
  19. Sedlacik J, Kutzner D, Khokale A, Schulze D, Fiehler J, Celik T, et al. Optimized 14+1 receive coil array and position system for 3D high-resolution MRI of dental and maxillomandibular structures. Dentomaxillofac Radiol 2016; 45: 20150177.
  20. Ruetters M, Juerchott A, El Sayed N, Heiland S, Bendszus M, Kim TS. Dental magnetic resonance imaging for periodontal indication - a new approach of imaging residual periodontal bone support. Acta Odontol Scand 2019; 77: 49-54. https://doi.org/10.1080/00016357.2018.1499959
  21. Probst M, Burian E, Robl T, Weidlich D, Karampinos D, Brunner T, et al. Magnetic resonance imaging as a diagnostic tool for periodontal disease: a prospective study with correlation to standard clinical findings - is there added value? J Clin Periodontol 2021; 48: 929-48.
  22. Zidan M, Schwindling FS, Juerchott A, Mente J, Nittka M, Hosseini Z, et al. Reliability and accuracy of dental MRI for measuring root canal length of incisors and canines: a clinical pilot study. Sci Rep 2022; 12: 14068.
  23. Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999; 212: 876-84. https://doi.org/10.1148/radiology.212.3.r99se34876
  24. Yoon JH, Lee JM, Yu MH, Kim EJ, Han JK, Choi BI. High-resolution T1-weighted gradient echo imaging for liver MRI using parallel imaging at high-acceleration factors. Abdom Imaging 2014; 39: 711-21. https://doi.org/10.1007/s00261-014-0099-8
  25. Deepho C, Watanabe H, Sakamoto J, Kurabayashi T. Mandibular canal visibility using a plain volumetric interpolated breath-hold examination sequence in MRI. Dentomaxillofac Radiol 2018; 47: 20170245.
  26. Lee MH, Kim YK, Park MJ, Hwang J, Kim SH, Lee WJ, et al. Gadoxetic acid-enhanced fat suppressed three-dimensional T1-weighted MRI using a multiecho dixon technique at 3 tesla: emphasis on image quality and hepatocellular carcinoma detection. J Magn Reson Imaging 2013; 38: 401-10. https://doi.org/10.1002/jmri.23983
  27. Park HJ, Lee SY, Kim MS, Choi SH, Chung EC, Kook SH, et al. Evaluation of shoulder pathology: three-dimensional enhanced T1 high-resolution isotropic volume excitation MR vs two-dimensional fast spin echo T2 fat saturation MR. Br J Radiol 2015; 88: 20140147.
  28. Wamasing P, Deepho C, Watanabe H, Hayashi Y, Sakamoto J, Kurabayashi T. Imaging the bifid mandibular canal using high resolution MRI. Dentomaxillofac Radiol 2019; 48: 20180305.
  29. Deepho C, Watanabe H, Kotaki S, Sakamoto J, Sumi Y, Kurabayashi T. Utility of fusion volumetric images from computed tomography and magnetic resonance imaging for localizing the mandibular canal. Dentomaxillofac Radiol 2017; 46: 20160383.
  30. Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol 2000 2006: 40: 11-28. https://doi.org/10.1111/j.1600-0757.2005.00141.x
  31. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther 2017; 8: 61