Acknowledgement
During the preparation of this work, the authors used ChatGPT 4 (OpenAI, San Francisco, CA, USA) to improve the flow and grammar of the manuscript. After using this tool, the authors reviewed and edited the content as needed. The authors take full responsibility for the content of the publication.
References
- Agrawal P, Nikhade P. Artificial intelligence in dentistry: past, present, and future. Cureus 2022; 14: e27405.
- Toh TS, Dondelinger F, Wang D. Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine. 2019; 47: 607-15. https://doi.org/10.1016/j.ebiom.2019.08.027
- Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int 2020; 51: 248-57.
- Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015; 61: 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018; 9: 611-29.
- Zhang Z, Sejdic E. Radiological images and machine learning: trends, perspectives, and prospects. Comput Biol Med 2019; 108: 354-70. https://doi.org/10.1016/j.compbiomed.2019.02.017
- Rodrigues JA, Krois J, Schwendicke F. Demystifying artificial intelligence and deep learning in dentistry. Braz Oral Res 2021; 35: e094.
- Brown JS, Khan A, Wareing S, Schache AG. A new classification of mandibular fractures. Int J Oral Maxillofac Surg 2022; 51: 78-90. https://doi.org/10.1016/j.ijom.2021.02.012
- Boffano P, Roccia F, Zavattero E, Dediol E, Uglesic V, Kovacic Z, et al. European Maxillofacial Trauma (EURMAT) project: a multicentre and prospective study. J Craniomaxillofac Surg 2015; 43: 62-70. https://doi.org/10.1016/j.jcms.2014.10.011
- Vinayahalingam S, van Nistelrooij N, van Ginneken B, Bressem K, Troltzsch D, Heiland M, et al. Detection of mandibular fractures on panoramic radiographs using deep learning. Sci Rep 2022; 12: 19596.
- Son DM, Yoon YA, Kwon HJ, Lee SH. Combined deep learning techniques for mandibular fracture diagnosis assistance. Life (Basel) 2022; 12: 1711.
- Nishiyama M, Ishibashi K, Ariji Y, Fukuda M, Nishiyama W, Umemura M, et al. Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle. Dentomaxillofac Radiol 2021; 50: 20200611.
- Shahnavazi M, Mohamadrahimi H. The application of artificial neural networks in the detection of mandibular fractures using panoramic radiography. Dent Res J(Isfahan) 2023; 20: 27.
- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264-9. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
- Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155: 529-36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
- Son DM, Yoon YA, Kwon HJ, An CH, Lee SH. Automatic detection of mandibular fractures in panoramic radiographs using deep learning. Diagnostics(Basel) 2021; 11: 933.
- Simundic AM. Measures of diagnostic accuracy: basic definitions. EJIFCC 2009; 19: 203-11.
- Khanagar SB, Alfouzan K, Awawdeh M, Alkadi L, Albalawi F, Alfadley A. Application and performance of artificial intelligence technology in detection, diagnosis and prediction of dental caries(DC) - a systematic review. Diagnostics(Basel) 2022; 12: 1083.
- Londono J, Ghasemi S, Hussain Shah A, Fahimipour A, Ghadimi N, Hashemi S, et al. Evaluation of deep learning and convolutional neural network algorithms accuracy for detecting and predicting anatomical landmarks on 2D lateral cephalometric images: a systematic review and meta-analysis. Saudi Dent J 2023; 35: 487-97.
- Dashti M, Londono J, Ghasemi S, Tabatabaei S, Hashemi S, Baghaei K, et al. Evaluation of accuracy of deep learning and conventional neural network algorithms in detection of dental implant type using intraoral radiographic images: a systematic review and meta-analysis. J Prosthet Dent(in press).
- Chen L, Li S, Bai Q, Yang J, Jiang S, Miao Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens 2021; 13: 4712.