DOI QR코드

DOI QR Code

영지식 증명 시스템 구축 연구

Research on A Comprehensive Study on Building a Zero Knowledge Proof System Model

  • 홍성혁 (백석대학교 첨단IT학부, IoT 전공)
  • Sunghyuck Hong (Division of Advanced IT, IoT major, Baekseok University)
  • 투고 : 2024.07.08
  • 심사 : 2024.09.20
  • 발행 : 2024.09.30

초록

제로 지식 증명(ZKP)은 가상 화폐 거래의 프라이버시와 보안을 향상시키기 위해 설계된 혁신적인 분산 기술이다. ZKP는 거래 제공자가 필요한 정보만을 공개함으로써 모든 관련 당사자의 기밀성을 보호한다. ZKP는 블록체인 거래에서 신원과 가치를 숨기는 강력한 프라이버시 기능을 제공할 뿐만 아니라, 당사자들이 서로의 신원을 확인할 필요 없이 돈을 교환할 수 있게 합니다. 이러한 익명성 기능은 금융 거래에서 신뢰와 보안을 촉진하는 데 매우 중요하며, 가상 화폐 영역에서 ZKP를 핵심 기술로 만든다. 4차 산업혁명 시대의 맥락에서 ZKP의 응용은 금융 서비스의 포괄적이고 안정적인 발전에 크게 기여합니다. 거래 프라이버시를 보장하여 신뢰할 수 있는 사용자 환경을 조성함으로써 가상 화폐의 광범위한 채택을 장려합니다. ZKP를 통합함으로써 금융 서비스는 보안과 신뢰의 높은 수준을 달성할 수 있으며, 이는 부문 내 지속적인 성장과 혁신을 위해 필수적이다.

Zero Knowledge Proof (ZKP) is an innovative decentralized technology designed to enhance the privacy and security of virtual currency transactions. By ensuring that only the necessary information is disclosed by the transaction provider, ZKP protects the confidentiality of all parties involved. This ensures that both the identity of the transacting parties and the transaction value remain confidential.ZKP not only provides a robust privacy function by concealing the identities and values involved in blockchain transactions but also facilitates the exchange of money between parties without the need to verify each other's identity. This anonymity feature is crucial in promoting trust and security in financial transactions, making ZKP a pivotal technology in the realm of virtual currencies. In the context of the Fourth Industrial Revolution, the application of ZKP contributes significantly to the comprehensive and stable development of financial services. It fosters a trustworthy user environment by ensuring that transaction privacy is maintained, thereby encouraging broader adoption of virtual currencies. By integrating ZKP, financial services can achieve a higher level of security and trust, essential for the continued growth and innovation within the sector.

키워드

과제정보

This research was supported by 2024 Baekseok University research fund.

참고문헌

  1. Goldwasser, S., Micali, S., & Rackoff, C. (1985). The knowledge complexity of interactive proof systems. SIAM Journal on Computing, 14(4), 397-429. DOI : 10.1137/0218012
  2. Peeters, R. (2020). Zero-knowledge proofs: A primer. arXiv preprint arXiv:2004.07523. https://arxiv.org/abs/2301.02161
  3. Brassard, G., & Auclair, M. (1993). A simple and secure way to do computations on integers in the presence of an adversary. In Advances in Cryptology?CRYPTO'93 (pp. 201-212). Springer, Berlin, Heidelberg. https://arxiv.org/pdf/2401.09277
  4. Blum, M., & Feldman, L. (1984). The canonical form for zero-knowledge proofs. In Advances in Cryptology?CRYPTO'84 (pp. 41-56). Springer, Berlin, Heidelberg. https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
  5. Fiat, U., & Shamir, A. (1986). How to prove yourself a liar without revealing any other secret. In Advances in Cryptology?EUROCRYPT'86 (pp. 206-221). Springer, Berlin, Heidelberg. https://www.sciencedirect.com/science/article/pii/S0306457322003296
  6. Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography. Cambridge University Press . http://staff.ustc.edu.cn/~mfy/moderncrypto/reading%20materials/Introduction_to_Modern_Cryptography.pdf
  7. Ben-Sasson, E., Chiesa, M., Genkin, D., Kristjansen, E., & Roos, A. (2013). Scalable transparent proof of knowledge systems. In Cryptology (CRYPTO 2013) (pp. 487-508). Springer, Berlin, Heidelberg. https://eprint.iacr.org/2018/046.pdf
  8. Bunz, B., Bootle, J., Lindqvist, A., & Groth, D. (2018). Transparent proofs of partial knowledge. In Theory of Cryptography (TCC 2018) (Part I) (pp. 313-344). Springer, Cham. https://link.springer.com/chapter/10.1007/3-540-48658-5_19
  9. Kiayias, A., & Apostolakos, I. (2014). Zero-knowledge proofs of knowledge for bitcoin transactions. In Financial Cryptography and Data Security (pp. 283-300). Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-031-33386-6_6
  10. Gentry, C., Gentry, R., & Halevi, S. (2015). Secure multi-party computation for every user. In Proceedings of the forty-sixth annual ACM symposium on theory of computing (pp. 109-118). https://dl.acm.org/doi/10.1145/3387108
  11. Chase, M., & Lysyanskaya, A. (2004). Efficient constructions for anonymous credentials. In Theory of Cryptography (TCC 2004) (pp. 195-211). Springer, Berlin, Heidelberg. https://eprint.iacr.org/2021/1680.pdf