
Copyright © 2024 The Korean Association of Internal Medicine
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which 
permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN 1226-3303
eISSN 2005-6648

http://www.kjim.org

ORIGINAL ARTICLE

Korean J Intern Med 2024;39:590-602
https://doi.org/10.3904/kjim.2023.490

Increasing correlation between oral and gastric 
microbiota during gastric carcinogenesis
Hee Sang You1,2, Jae Yong Park2, Hochan Seo1,2, Beom Jin Kim2, and Jae Gyu Kim2

1Laboratory of Gastrointestinal Mucosal Immunology, Chung-Ang University College of Medicine, Seoul; 2Department of Internal Medicine, 
Chung-Ang University College of Medicine, Seoul, Korea

Background/Aims: Recent research has increasingly focused on the role of the gastric microbiome in the development of 
gastric cancer. We aimed to investigate the changes in the microbiome during gastric carcinogenesis in structural and func-
tional aspects, with a specific focus on the association between oral and gastric microbiomes.
Methods: We collected saliva, gastric juice, and gastric tissue samples from 141 patients at different stages of gastric car-
cinogenesis and processed them for microbiome analysis using 16S rRNA gene profiling. The alpha and beta diversities were 
analyzed, and the differences in microbiome composition and function profiles were analyzed among the groups, as well as 
the correlation between changes in the oral and gastric microbiomes during carcinogenesis.
Results: We observed significant differences in microbial diversity and composition between the disease and control 
groups, primarily in the gastric juice. Specific bacterial strains, including Schaalia odontolytica, Streptococcus cristatus, and 
Peptostreptococcus stomatis, showed a significant increase in abundance in the gastric juice in the low-grade dysplasia and 
gastric cancer groups. Notably, the correlation between the oral and gastric microbiota compositions, increased as the dis-
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INTRODUCTION

Gastric cancer (GC) is a fatal disease that poses a signifi-
cant health threat. Despite its decreasing incidence rate, it 
remains a significant global health concern and ranks as the 
fourth leading cause of cancer-related deaths worldwide [1]. 
Among the various risk factors associated with GC develop-
ment, Helicobacter pylori infection is generally accepted as 
the most critical [2]. H. pylori infection plays a significant role 
in the perpetuation of chronic inflammation and irritation 
of the stomach lining, a condition known as gastritis, which 
leads to the development of premalignant gastric lesions [3].

Recently, there has been growing evidence that gastric 
bacteria other than H. pylori influence certain aspects of the 
development of GC [4,5]. In patients with GC, the compo-
sition of the gastric microbiota tends to shift in a direction 
similar to that of the intestinal or oral microbiota [6]. The 
oral cavity is a crucial route for the continuous supply of 
bacteria to the upper gastrointestinal tract, including the 
stomach. Non-H. pylori bacteria originating from the oral 
cavity may exert a more meaningful effect, especially in gas-
tric environments with low acidity, such as severe mucosal 
atrophy. Nevertheless, although the gastric microbiome is 
suspected to play a role in GC development, few studies 
have focused on its association with the oral microbiome.

Furthermore, most previous studies have solely conducted 
structural analyses without considering functional aspects, 
which cannot provide significant insights into the mecha-
nism of gastric carcinogenesis. To elucidate the role of bac-
teria in the occurrence of GC, concurrent metagenomic 
functional analyses should yield more revealing results [7].

Therefore, we aimed to characterize the changes in the mi-
crobiome during gastric carcinogenesis and assess its predict-
able functional profiles. Additionally, we aimed to investigate 
the correlation between the microbiomes of the oral cavity 
and stomach at different stages of gastric carcinogenesis.

METHODS

Study participants and sample collection
The participants were recruited at Chung-Ang University 
Hospital between 2017 and 2022. The inclusion criteria for 
the neoplasm group were patients newly diagnosed with 
histologically confirmed GC or adenoma, whereas the con-
trol group consisted of patients with gastritis only without 
evidence of GC or adenoma on endoscopic examination. 
Patients with a history of malignancy, those who under-
went prior gastric surgery, those associated with a recent 
use of antibiotics or probiotics within the last 3 months, 
or those under 20 years of age were excluded. The final 
analysis group of 141 participants comprised 132 patients 
and nine controls. This case-control study was approved by 
the Institutional Review Board of the Chung-Ang University 
Hospital (IRB No. C2016047[1790]) and was conducted in 
accordance with the Declaration of Helsinki. Informed con-
sent was obtained from all participants.

The Vienna Classification System was used to diagnose 
and categorize gastric neoplasms [8]. Category 3 (non-in-
vasive low-grade adenoma/dysplasia) was classified as the 
low-grade dysplasia (LGD) group. Category 4.1 (high-grade 
adenoma/dysplasia) and category 4.2 (non-invasive carci-
noma [carcinoma in situ]) were classified as the high-grade 
dysplasia (HGD) group. Category 4.3 (suspicion of invasive 
carcinoma) and 5 (invasive neoplasia) were classified as the 
GC group.

A minimum of 10 mL of saliva was collected by allowing it 
to accumulate on the floor of the mouth, followed by spit-
ting it into a specimen tube. Samples were stored at -80°C 
until use. Gastric juice samples were obtained according to 
the following protocol: Patients fasted for more than 8 h be-
fore sample collection. For patients who underwent endo-
scopic examination or resection, a trap tube was connected 
between the endoscope and the suction tube before the 

ease progressed. Predictive analysis of the metagenomic functional profiles revealed changes in functional pathways that 
may be associated with carcinogenesis (ABC transport and two-component systems).
Conclusions: During gastric carcinogenesis, the abundance of oral commensals associated with cancer increased in the 
stomach. The similarity in microbial composition between the stomach and oral cavity also increased, implying a potential 
role of oral-gastric bacterial interactions in gastric cancer development.
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procedure. Gastric juice (7–30 mL) was collected by suction 
through the endoscope at the beginning of the procedure. 
Gastric tissues were collected from the same gastric sites in 
both the patient and control groups, following the same 
protocol. Two samples were obtained from the antrum 
and two from the body, resulting in a total of four tissue 
samples, which were then stored at -80°C. The endoscopes 
were washed and disinfected to avoid contamination by im-
mersion in a detergent solution containing 7% proteolytic 
enzymes and 2% glutaraldehyde before use. Following the 
collection of gastric juice, the samples were kept at -20°C 
and immediately transferred to the nearby laboratory, with-
out the use of preservative reagents. The collected gastric 
juice was diluted to 40 mM by the addition of 1 M Tris base 
and centrifuged at 600 × g for 10 minutes at 4°C to col-
lect the supernatant. After transfer to a new 15 mL tube, it 
was again centrifuged at 1,500 × g for 10 minutes at 4°C. 
The supernatant was subsequently harvested and stored at 
-80°C.

DNA extraction and sequencing
All samples were diluted in 10 mL of PBS and incubated for 
24 hours prior to DNA extraction. After the centrifugation 
step at 10,000 × g for 10 minutes at 4°C, the pellet contain-
ing the bacteria was diluted with 200 μL of PBS to create a 
suspension. Microbial genomic DNA was extracted using a 
DNeasy PowerSoil kit (QIAGEN, Hilden, Germany) accord-

ing to the standard protocol provided in the manufacturer’s 
instructions. The isolated genomic DNA was amplified by 
targeting the V3-V4 hypervariable regions of the 16S rRNA 
gene. This amplification was carried out using specific prim-
ers (16S_V3_F: 5' -TCGTCGGCAGCGTCAGATGTGTATAA 
GAGACAGCCTACGGGNGGCWGCAG- 3' and 16S_V4_ 
R: 5'- GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-
GACTACHVGGGTATCTAATCC- 3'). Subsequently, ampli-
con libraries were prepared from the amplified DNA frag-
ments. The MiSeq Reagent Kit v3 (600-cycle) (Illumina, San 
Diego, CA, USA) was used to sequence the library reagents. 
The Nextra XT Index Kit v2 Set A (96 indices, 384 samples) 
(Illumina) was used for barcodes and adapters. Library 
preparation for sequencing followed the 16S Metagenomic 
Sequencing Library Preparation (Part # 15,044,223 Rev. B).  
All amplicons were sequenced using MiSeq (Illumina) ac-
cording to the manufacturer’s instructions. The bacterial 
DNA in each sample was quantified using a QIAxpert sys-
tem (QIAGEN).

Taxonomic assignment and profiling
Paired-end 16S rRNA gene sequences were input into 
the Quantitative Insights into Microbial Ecology software 
(QIIME2 v2021. 4) [9]. Adapter sequences were removed 
using cutadapt. Reads were filtered for quality and chime-
ric reads using dada2 with manual parameters (trim-left-f 
0, trim-left-r 0, trunc-len-f 260, trunc-len-r 200, trunc-q 2, 

Table 1. Clinical characteristics of patients in each sample group

Sample type Variable Total Control
Low-grade 
dysplasia

High-grade 
dysplasia

Gastric cancer

Oral wash Numbers 129 8 58 33 30

Age (yr) 64.2 ± 11.3 34.9 ± 11.0 66.2 ± 8.3 66.5 ± 7.9 66.2 ± 8.4

Sex (M:F) 96:33 3:5 42:16 24:9 27:3

Gastric juice Numbers 141 9 58 33 41

Age (yr) 64.4 ± 11.9 33.2 ± 11.4 66.2 ± 8.3 66.4 ± 83.0 67.0 ± 9.1

Sex (M:F) 100:41 3:6 42:16 24:9 31:10

Tissue (antrum) Numbers 130 9 58 33 30

Age (yr) 63.8 ± 11.9 33.2 ± 11.4 66.2 ± 8.3 66.5 ± 7.9 65.5 ± 8.4

Sex (M:F) 96:34 3:6 42:16 24:9 27:3

Tissue (body) Numbers 130 9 58 33 30

Age (yr) 63.8 ± 11.9 33.2 ± 11.4 66.2 ± 8.3 66.5 ± 8.0 65.5 ± 8.4

Sex (M:F) 96:34 3:6 42:16 24:9 27:3

Values are presented as number only or mean ± standard deviation.
M, male; F, female.
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Figure 1. The alpha diversity (A) and beta diversity (B, C) at each stage of gastric carcinogenesis in the gastric juice, gastric tissue (antrum, 
body), and saliva samples. The alpha diversity was analyzed using the observed Chao1, Shannon, and Simpson indices, while the beta 
diversity was assessed using the Bray–Curtis method. The disease stages were categorized as control, low-grade dysplasia (LGD), high-
grade dysplasia (HGD), and gastric cancer (GC). *p < 0.05, **p < 0.01, ***p < 0.001.
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max-ee-f 3, max-ee-r 3) [10]. Taxonomic classification was 
performed using a Naïve Bayes classifier trained on the 
extracted V3-V4 region from the SILVA 138 database. All 
sequences classified as either chloroplasts or mitochondria 
were removed.

Statistical analysis
For alpha diversity analysis, samples were rarefied to the 
minimum read number (1,969) to normalize the read 
counts. Alpha diversity was further examined by adjusting 
for age and sex using analysis of variance (ANOVA). Prin-
cipal coordinate analysis (PCoA) was conducted to deter-
mine the individual taxa-level clustering of groups based on 
the Bray–Curtis dissimilarity distance and weighted UniFrac 
distance. The p value for the PCoA was calculated by per-
mutational multivariate analysis of variance (PERMANOVA) 
using dissimilarity matrices. Additionally, we verified the 
PCoA after adjusting for age and sex using PERMANOVA. 
To analyze the differences in microbiome composition and 
functional profiles between groups, the Wilcoxon rank-sum 
test was performed. Linear discriminant analysis (LDA) Ef-
fect Size (LEfSe) was also used to determine the differential-
ly abundant taxa between the groups for the selection of 

biomarkers with statistical and biological significance. When 
converting the feature table to LEfSe format, 100,000 was 
used as the normalization value. The LEfSe algorithm uti-
lized the Kruskal–Wallis test with a cutoff LDA score (log10) 
of 3.5 for bacteria and 0.25 for functional profiles. During 
the LEfSe analysis, the false discovery rate (FDR) was applied 
to further validate the p values. This value represents the 
q-value and was examined to determine the significance of 
the results and assess false positives. Additionally, an anal-
ysis was conducted using thse multivariate association with 
linear models (MaAsLin2) package in R, adjusting for age 
and sex as covariates. A q-value of less than 0.25, adjust-
ed for the FDR using the Benjamini–Hochberg method, was 
considered statistically significant. This threshold is the de-
fault significance threshold in MaAsLin2, and is common-
ly used in microbiome studies [11]. To reduce noise, taxa 
present in less than 10% of all samples with a mean rela-
tive abundance of less than 0.01% were removed before 
conducting LEfSe and MaAsLin2 analyses. For the analysis 
of the relative abundance and functional profile prediction, 
the Total-Sum Scaling method was used for normalization. 
Spearman’s rank correlation coefficient was used to analyze 
the correlation between the microbiota compositions of all 
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samples. Spearman’s rho and p values were calculated using 
the cor.test in R [12]. The analyzed correlation coefficient 
value (rs) was found to be statistically significant when the 
p value was < 0.05, indicating a meaningful relationship. 
We performed multiple testing corrections for the Wilcoxon 
rank-sum test using the Benjamini–Hochberg procedure to 

control for the FDR. The functional profiles of the gastric 
and oral microbiomes of the control and each disease stage 
were predicted using Tax4Fun2 [7]. All analyses were con-
ducted using R Statistical Software (version 3.6.1; R Founda-
tion for Statistical Computing, Vienna, Austria).

Figure 2. Microbial composition and linear discriminant analysis Effect Size (LEfSe) analysis across gastric cancer stages for the gastric 
juice, gastric tissue (antrum, body), and saliva samples. (A) The microbial composition changes at the phylum level in response to gastric 
carcinogenesis in the tissues (antrum and body) and saliva. (B) LEfSe analysis employing a cutoff linear discriminant analysis (LDA) score of 
3.5 or higher for further analysis. After using the non-parametric Kruskal–Wallis test with a significance threshold (FDR-adjusted p value; 
q-value) of 0.05, we selected significant discriminative groups using the LDA within the LEfSe algorithm. Subsequently, data normalization 
for LEfSe analysis was conducted through relative log expression. Microbial taxa with high proportions in the control, low-grade dysplasia 
(LGD), high-grade dysplasia (HGD), and gastric cancer (GC) groups were color-coded as follows: red > orange > light blue > blue. The indi-
cated strains have a value of p < 0.05, i.e., Pseudomonadota (formerly Proteobacteria), Bacillota (formerly Firmicutes), and Actinomycetota 
(formerly Actinobacteria).
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RESULTS

Clinical characteristics of the patients
Samples were collected from 141 patients (nine controls, 58 
with LGD, 33 with HGD, and 41 with GC). The study par-
ticipants had a mean age of 64.4 ± 11.9 years, with a male 
proportion of 70.9% (100/141). The clinical characteristics 
of the enrolled patients according to each sample type are 
summarized in Table 1.

Changes in the diversity of gastric and oral 
microbiota during gastric carcinogenesis
We analyzed the microbial diversity in the microbiota of the 
gastric juice among the four groups. In the alpha diversity 
analysis of the gastric juice, the Simpson indices were sig-
nificantly lower in the HGD and GC groups than in the LGD 
and control groups (p < 0.05; Fig. 1A). In contrast, there was 
no significant difference in the alpha diversity of the micro-
bial composition within the gastric tissue (both antrum and 
body) and oral samples among the four groups.

The beta diversity was assessed between the different 
stages of GC in the gastric juice, tissue (antrum, body), and 
saliva samples (Fig. 1B). A significant difference in micro-
biota composition was confirmed among the four groups 
of gastric juice samples, and the clustering distinction of 
the control group was particularly prominent (p < 0.001;  
Fig. 1B). Regarding the beta diversity, there was also a sig-
nificant difference in the microbial composition of the gas-
tric tissue among the four groups (antrum, p < 0.05; body,  
p < 0.001; Fig. 1B). Moreover, no significant differenc-
es were found in the beta diversity of the oral microbiota 
among the four groups (p = 0.463, Fig. 1B).

After adjusting for age and sex, the alpha and beta di-
versity analyses exhibited numerical fluctuations in cer-
tain p-values; however, the overall significance remained 
consistent both before and after the adjustment. Addi-
tionally, to clearly demonstrate the differences in beta di-
versity based on location corresponding to each stage of 
gastric carcinogenesis, schematic diagrams were constructed  
(Fig. 1C). Significant differences were observed in microbi-

Figure 2. Continued
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ome composition among the different sample types at all 
stages of gastric carcinogenesis. In particular, the difference 
in microbial composition between the saliva and gastric 
juice was more pronounced in the control group than in the 
disease groups (LGD, HGD, and GC groups).

Changes in the gastric and oral microbiota 
composition during gastric carcinogenesis
A difference was observed in the gastric juice microbial com-
munity between the control and disease groups (Fig. 2A).  
The abundance of Pseudomonadota (formerly Proteobacte-
ria) decreased, while that of Bacillota (formerly Firmicutes) 
and Actinomycetota (formerly Actinobacteria) increased in 
the gastric juice of the disease group compared to that of 
the control group. Moreover, a difference in the microbial 
composition of the tissues between the control and disease 
groups (both the antrum and the body) was observed. In 
the tissues, the abundance of Campylobacterota increased 
in the disease groups compared to that in the control group. 
In contrast, no significant difference in the oral microbial 
composition between the control and disease groups was 
observed. In the saliva, Bacillota, Actinomycetota, and Bac-
teroidota predominated in both the control and disease 
groups, and the composition fractions of each group were 
very similar, with few differences between the groups.

The LEfSe results for gastric juice samples confirmed sig-
nificant differences in the abundance of specific strains, 
including Ralstonia insidiosa, Schaalia odontolytica, Rothia 
mucilaginosa, Peptostreptococcus stomatis, Streptococ-
cus salivarius, H. pylori, Streptococcus sanguinis, Gemella 
haemolysans, Streptococcus australis, Streptococcus crista-
tus, Haemophilus parainfluenza, and Prophyromonas pas-
teri, among others, within each group (Fig. 2B, q < 0.05). 
Among these characteristic bacteria, the abundance of R. 
insidiosa decreased in the disease groups compared to the 
control group (q < 0.01). However, the abundance of other 
strains increased in the disease groups than in the control 
group, with the highest proportion observed in the LGD 
group (q < 0.05). In the gastric fluid sample analysis, ad-
justing for sex and age resulted in a loss of significance for 
some bacterial strains. However, the strains S. odontolyti-
ca, P. stomatis, and S. cristatus generally maintained their 
significance even after adjustment for age and sex (Supple-
mentary Table 1, 2). In the tissues (antrum), the abundance 
of Pseudomonas yamanorum, H. parainfluenza, and S. 
cristatus differed significantly between each disease group 

(q < 0.05). Among the three bacterial species, P. yamano-
rum and H. parainfluenza were more abundant in the HGD 
group than in the control group, whereas S. cristatus was 
the most abundant in the LGD group. In the body tissues, 
the abundance of Prevotella pallens significantly differed in 
each disease group (q < 0.05). The abundance increased in 
the disease group compared to the control group, with the 
highest observed in the LGD group. In the oral samples, the 
abundance of Prevotella melanionogenica, G. haemolysans, 
and Rothia aeria showed significant differences among the 
disease groups (q < 0.05), with G. haemolysans exhibiting 
a significantly lower proportion in the control group than in 
the other disease groups (q < 0.05). Moreover, the bacterial 
strains exhibited significant changes (q < 0.05) following the 
LEfSe analysis (Supplementary Table 3-8).

Increased similarity between the oral 
and gastric microbiotas during gastric 
carcinogenesis
The degree of similarity in bacterial composition among the 
oral, gastric juice, and gastric tissue samples within each indi-

Figure 3. Correlation of the microbial composition among differ-
ent sample types and disease groups. The composition and ratio 
of strains of each microbial composition in the oral cavity, gastric 
juice, gastric antrum tissue, and gastric body tissue were con-
firmed by analyzing the similarity in Spearman’s rank correlation 
according to the disease stage between each sample. The graph 
illustrates changes in the degree of similarity based on gastric 
carcinogenesis. This enabled us to determine how the similarity 
levels among gastric juice, gastric tissue, and saliva changed in 
relation to gastric carcinogenesis. The similarity between the 
samples increased as the disease progressed. Using the Spearman 
rank test, the correlation coefficient for the relative microbial 
composition between the two types of specimens during gastric 
carcinogenesis was calculated. Spearman’s rho and p value were 
calculated using the cor.test in R. All results displayed in the graph 
indicate significant positive correlations (correlation coefficient > 
0.2; p < 0.05). GJP, gastric juice; ORWP, saliva; TIA, tissue (antrum); 
TIB, tissue (body); LGD, low-grade dysplasia; HGD, high-grade 
dysplasia; GC, gastric cancer.
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Figure 4. Metagenomic analysis reveals functional differences among the different sample types and disease groups. Linear discriminant 
analysis Effect Size (LEfSe) analysis identified functional profiles that exhibited changes with a linear discriminant analysis (LDA) score cut-
off of 0.25 in response to gastric carcinogenesis. After employing the non-parametric Kruskal–Wallis test with a significance threshold 
(FDR-adjusted p value; q-value) of 0.05, we selected significant discriminative groups using the LDA within the LEfSe algorithm. Subse-
quently, data normalization for LEfSe analysis was conducted using relative log expression. Functional profiles with high proportions in the 
control, low-grade dysplasia (LGD), high-grade dysplasia (HGD), and gastric cancer (GC) groups were color-coded as follows: red > orange 
> light blue > blue.
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vidual disease group was assessed using correlation analysis 
(Fig. 3, Supplementary Table 9). The similarity between the 
samples increased as the disease progressed. Moreover, the 
similarity in microbial composition was relatively low among 
the different sample types in the control group. The similar-
ity in microbial composition between the saliva and gastric 
juice samples increased from 0.22 in the control group to 
0.58, 0.60, and 0.58 in the LGD, HGD, and GC groups, re-
spectively. Similar tendencies were also found between the 
gastric juice and tissues (antrum and body), as well as be-
tween the saliva and tissues (antrum and body), with higher 
similarity of microbial composition in the GC groups than in 
the control group (0.42–0.51 vs. 0.30–0.27 and 0.68–0.66 
vs. 0.36–0.34, respectively). Meanwhile, the microbial simi-
larity between the antrum and body tissues consistently dis-
played a stable level of similarity regardless of the disease 
status. Furthermore, there was a tendency for an increase 
in the similarity between samples with respect to the stages 
of gastric carcinogenesis. However, some samples showed a 
slight decrease in similarity as they progressed from the LGD 
group, which exhibited the highest similarity, to the HGD 
and GC groups (GJP-TIA, GJP-TIB, and ORWP-TIB).

Functional profile analysis of the microbiome
When comparing the functional profiles based on microbi-
ome clustering in four distinct samples across the disease 
stages, we anticipated that changes would primarily occur 
in signal transduction (Gastric juice: putative ABC transport 
system permease protein - K02004, two-component system, 
OmpR family, response regulator - K02483, PTS system, 
beta-glucoside-specific IIB component - K02756, PTS sys-
tem, beta-glucoside-specific IIC component - K02757, PTS 
system, beta-glucoside-specific IIA component - K02755, 
two-component system, OmpR family, phosphate regulon 
sensor histidine kinase PhoR - K07636, two-component 
system, NarL family, response regulator DesR - K07693, 
and two-component system, chemotaxis family, chemo-
taxis protein CheY - K03413; Body tissue: ABC-2 type 
transport system ATP-binding protein - K01990 and ABC-
2 type transport system permease protein - K01992), DNA 
replication and expression (Gastric juice: glycine cleavage 
system transcriptional repressor - K03567; Antrum tissue: 
adenine-specific DNA-methyltransferase - K07316 and DNA 
(cytosine-5)-methyltransferase 1 - K00558; Body tissue: 
adenine-specific DNA-methyltransferase - K07316), and 
ATP-related pathways (Gastric juice: macrolide transport 

system ATP-binding/permease protein - K18230 and zinc/
manganese transport system ATP-binding protein - K02074; 
Body tissue: ATP-binding cassette, subfamily B, bacterial - 
K06147; Saliva: macrolide transport system ATP-binding/
permease protein - K05685) (Fig. 4, q < 0.05). The func-
tional profiles exhibited significant changes (q < 0.05) in the 
LEfSe analysis, and this significance was maintained by the 
application of q-values (Supplementary Table 10-13). 

DISCUSSION

In this study, we investigated changes in microbial compo-
sition and function in the oral cavity and stomach through-
out the gastric carcinogenesis pathway. We observed dif-
ferences in bacterial diversity and composition between the 
disease and control groups. Furthermore, changes in the 
metagenomic functional profiles potentially associated with 
carcinogenesis were observed. We also found that the bac-
terial composition in the oral cavity and stomach gradually 
became more similar during gastric carcinogenesis.

Similar to previous studies, the GC group exhibited a de-
crease in microbial diversity in the gastric juice compared 
with the control group, with a consistent trend of domi-
nance by specific minority species [5]. The decrease in mi-
crobial diversity in various diseases compared to that in the 
healthy state is well established [13]. Moreover, the beta 
diversity was significantly different between the healthy 
and disease groups in the microbial communities of the 
gastric juice and tissues, indicating variations in the inter-
group microbial composition. Specifically, at the phylum 
level, there was a decrease in the abundance of Pseudo-
monadota and an increase in that of Bacillota in the gastric 
juice with disease progression. Moreover, certain species of 
bacteria showed differences between the control and dis-
ease groups. At the phylum level, the abundance of Cam-
pylobacterota increased in the disease group compared to 
the control group. The results observed at the phylum level 
are consistent with those of previous studies on microbial 
clustering in GC [14]. Among the specific bacterial species 
whose abundance increased in the disease group compared 
to the control group, some have been widely reported to be 
associated with cancer. S. odontolytica has been identified 
as a potential pathogen capable of triggering malignant oral 
conditions [15]. It has also been reported to be associated 
with higher cancer prevalence [16]. Similar to S. odontolyt-
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ica, which is commonly found in the oral cavity, S. cristatus 
and P. stomatis are associated with oral cancer [17-19]. Fur-
thermore, P. stomatis has been identified as a potent poten-
tial carcinogenesis biomarker not only for oral cancer but 
also for colorectal cancer [20,21]. In our study, we observed 
that the abundance of these strains increased in the stom-
ach during gastric carcinogenesis, raising the suspicion that 
these strains may play a significant role in GC development.

Inspired by the increasing trend of oral microbial strains 
in the disease group, we further analyzed the correlation 
between the oral and gastric microbiomes. We compared 
and analyzed the characteristics of the microbial composi-
tion of samples obtained from different anatomical loca-
tions in the upper gastrointestinal tract of the patient and 
control groups. Disparities in the correlations between mi-
crobial compositions based on anatomical location were 
observed between the disease and control groups. In the 
control group, the oral microbial composition showed rela-
tively low similarity with that of the gastric juice and tissue 
samples. In contrast, in the disease group, there was an in-
crease in the similarity between the oral and gastric samples, 
as well as between the gastric juice and tissues. Considering 
the absence of significant differences in the oral microbial 
composition among the groups, we suspect that differences 
in the gastric environment might have altered the process 
by which oral bacteria influence the microbial composition 
upon entering the stomach. The oral cavity serves as a con-
tinuous route for bacterial influx into the upper GI tract. The 
bacterial population in the esophagus originates from the 
oral cavity, and oral bacteria may influence the development 
of esophageal cancer. Similarly, it can be inferred that oral 
bacteria can significantly impact the gastric microbial com-
position [22-25].

Infection with H. pylori, a well-recognized risk factor for 
GC, leads to persistent chronic inflammation of the gastric 
mucosa, eventually causing mucosal atrophy and worsen-
ing atrophic gastritis. As atrophic gastritis progresses, gas-
tric acid secretion decreases, which can substantially affect 
the gastric microbial composition [26]. Bacterial strains that 
would typically struggle to thrive in the highly acidic envi-
ronment of the stomach could proliferate more easily as the 
acidity decreases. This could also account for the increased 
similarity between the floating bacteria in the gastric juice 
and the clustered bacteria adhering to the gastric mucosa 
in the stomach of patients with gastric neoplasms. Previ-
ous studies have demonstrated this phenomenon, and the 

altered gastric microbial composition in patients taking 
proton pump inhibitors further supports this observation. 
Therefore, although a significant proportion of orally ingest-
ed microbial strains may persist in a healthy stomach, these 
strains may more readily establish clusters and microbial 
compositions within the stomach as gastric carcinogenesis 
progresses, coupled with reduced gastric acid secretion. Re-
cent studies have actively explored the potential impacts of 
non-H. pylori gastric bacteria on GC development, which 
aligns with this hypothesis.

Consequently, additional analyses were conducted to an-
alyze the functional profile prediction and assess the rele-
vance of the oral-gastric microbiome cluster. The functional 
profiles of microorganisms known to be associated with 
cancer, such as the ATP-binding cassette transport system, 
two-component system, and phosphoenolpyruvate-car-
bohydrate phosphotransferase system, showed significant 
changes in the LEfSe analysis when compared between the 
disease and control groups. These profiles were higher in 
the disease group than in the control group, suggesting a 
positive correlation, similar to the observed increase in P. 
stomatis and S. cristatus with disease progression. This in-
dicates that increased microbial metabolism may facilitate 
the survival and growth of these organisms. The aforemen-
tioned functional profiles, such as the ABC transport system 
and two-component system, operate in bacteria. The ABC 
transport system can also function in eukaryotic cells, aiding 
nutrient uptake, toxin secretion, and sometimes chemother-
apy drug resistance in tumor cells [27-29]. The two-com-
ponent system serves as a central player in bacterial signal 
transduction, catalyzing DNA binding, and biochemical re-
actions. It is involved in various physiological functions relat-
ed to survival, such as sporulation and antibiotic resistance, 
making it play a role in inducing cancer [30,31].

Our study had some limitations. In some sample groups, 
there was an imbalance in the distribution of sex and age, 
with a bias towards one side. Consequently, we included 
groups with sex and age imbalances in the analysis. After 
conducting the analysis, additional verification was per-
formed after adjusting for age and sex. Although there 
were no significant changes in alpha and beta diversity, 
some bacterial strains lost significance in the LEfSe results 
when adjusted for sex and age. However, in gastric juice 
samples, the significance of S. odontolytica, P. stomatis, 
and S. cristatus strains was maintained. This may have in-
fluenced the results of the metagenomic analyses between 
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the control and disease groups. In the analysis of function-
al profiles, we conducted a predictive analysis rather than 
an actual functional analysis. The current body of evidence 
often lacks comprehensive analyses of both structural and 
functional aspects of microbial communities. Therefore, it 
is not possible to conclusively demonstrate the precise role 
and mechanism of microbial communities in GC develop-
ment. Despite these limitations, our study revealed some 
interesting findings.

Our findings suggest that compositional changes occur in 
the gastric microbiome, accompanied by functional impli-
cations during carcinogenesis. This indicates that microbes 
other than H. pylori, a prominent contributor to GC, play 
a role in altering the balance between the host and com-
mensal microbial flora within the stomach. The increased 
similarity between the microbiota of the oral cavity and 
stomach implies that the oral microbiome might play a role 
in carcinogenesis, sustaining the inflammatory process and 
heightening the risk of GC development through its distinc-
tive genotoxic potential.

KEY MESSAGE
1.	 The correlation between oral and gastric microbio-

ta increases during gastric carcinogenesis, implying 
a possible link between oral bacteria and GC.

2.	 The abundance of certain specific oral commen-
sals, known to be associated with cancer develop-
ment, was increased in the gastric juice of patients 
with LGD and GC compared to controls.

3.	Functional profile analysis of the microbial com-
position of the gastric juice further supported the 
potential role of the microbiome in gastric carcino-
genesis.
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