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ABSTRACT

Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections 
globally, manifesting in diverse clinical phenotypes with varying degrees of severity and 
complications. The mechanisms underlying UTIs are gradually being elucidated, leading to 
an enhanced understanding of the immune responses involved. Innate immune cells play a 
crucial defensive role against uropathogenic bacteria through various mechanisms. Despite 
their significant contributions to host defense, these cells often fail to achieve complete 
clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI 
patients. However, the persistence of infections and related pathological symptoms in the 
absence of innate immune cells in animal models underscore the importance of innate 
immunity in UTIs. Therefore, the host protective functions of innate immune cells, including 
neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are 
delicately coordinated and timely regulated by a variety of cytokines to ensure successful 
pathogen clearance.
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INTRODUCTION

The urinary system comprises the upper urinary tract, including the kidneys and ureters, 
and the lower urinary tract, which encompasses the bladder and urethra. In clinical practice, 
lower urinary tract infections (UTIs) are more common than upper UTIs (1,2). This higher 
incidence is attributed to the proximity of the lower urinary tract to the gastrointestinal 
tract, exposing it to various bacteria. Patients who experience 2 or more infections within 
6 months, or 3 or more within a year, are defined as having recurrent UTIs (rUTIs) (3). 
Since UTIs are typically treated with antibiotics, patients with rUTIs have a higher risk of 
developing antibiotic resistance to uropathogens (3).

A prominent pathogen causing UTI is uropathogenic Escherichia coli (UPEC), which 
accounts for 80% of infections (4). Among the fimbriae expressed by UPEC, FimH unit 
forms particularly strong bonds with uroplakin, which is expressed on urothelial cells, 
facilitating attachment and proliferation of UPEC on the epithelial surface (5). Although 
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UPEC is classified as an extracellular pathogen, it has the ability to invade cells and establish 
intracellular bacterial niches within urothelial cells, thereby contributing to persistent and 
recurrent infections.

During the initial stage of UTIs, UPEC attaches to and colonizes epithelial cells, necessitating 
hosts to establish a solid physical barrier that hinders or inhibits the attachment of pathogens 
during the early infection stages. Umbrella cells, also known as superficial cells, secrete 
hyaluronic acid and sulfated glycosaminoglycans (GAGs) to form an extracellular matrix, 
which generates a GAG layer (6). Thus, the GAG layer in the bladder hinders the attachment 
and invasion of pathogens, thereby serving as a passive defense mechanism for the host.

Although passive defense mechanisms such as impeding bacterial colonization, are crucial 
in combating UPEC infections, effective host defense against pathogens necessitates active 
defense mechanisms. In the human body, immune cells undertake these defensive functions. 
Unlike other pathogens, bacteria can rapidly proliferate under suitable environmental 
conditions. Therefore, host is often vulnerable to infections until adaptive immunity takes 
effect. Innate immune cells make up for this short lag in responses and associated weakness. 
Clinically, rUTIs are significant as often immune responses directed at pathogens are 
associated with chronic infections. This involves primarily adaptive immune cells, with the 
role of immune effector cells being regulated by adaptive immunity. While this adaptive 
immunity during rUTI is beyond the scope of this review, detailed explanations can be found 
in the following excellently written review papers (7,8).

This review aims to emphasize the critical nature of the innate immune cells against UTIs, 
seeking to improve the current understanding of their contribution during infection. The 
innate immune response against invading pathogens is a synchronized process that involves 
a delicate balance of innate immune cells, various cytokines, and chemokines, all coming 
together to safeguard the bladder against the uropathogens. This review intends to introduce 
how innate immune cells and urothelial cells interact with immune effector cells to regulate 
defense mechanisms against these infections.

MAIN

The urinary bladder harbors a diverse array of innate immune cells, including tissue-resident 
innate immune cells such as macrophages, innate lymphoid cells (ILCs), dendritic cells, mast 
cells, and γδ T cells, which play defensive roles (Fig. 1). In addition, bladder epithelial cells 
also assist in innate immune functions. However, when these immune cells are insufficient 
to deal with rapidly proliferating bacterial infections, the body mobilizes non-resident 
immune effector cells from the bloodstream, such as neutrophils, monocytes, and NK cells, 
to actively participate in host defense (Fig. 1). Therefore, the presence of diverse immune cells 
in bladder tissues, complemented by the mobilization of bloodstream-immune cells when 
tissue-resident cells are insufficient, underscores the intricate and dynamic nature of the 
body’s defense mechanisms against bacterial infections in the urinary tract.

Neutrophils
Although neutrophils are innate immune cells, they exhibit a behavior distinct from 
other tissue-resident innate immune cells by primarily circulating in the bloodstream and 
swiftly migrating to sites of infection upon sensing inflammatory signals, thereby exerting 
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antimicrobial actions (9,10). As neutrophils exit the bloodstream and migrate through tissue, 
they encounter barriers such as the basement membrane, which is composed of laminins 
expressed by basal epithelial cells, which could impede their recruitment. However, neutrophils 
can secrete metalloproteinase-9, which facilitates their penetration of the basement membrane 
(11). Having traversed this barrier, neutrophils navigate through multiple layers, including 
basal and intermediate cells, to reach superficial epithelial cells. Considering that colonization 
and invasion by UPEC predominantly occur in superficial epithelial cells, the migration of 
neutrophils can represent the most proactive and dynamic immune defense mechanism against 
bacterial invasion. The dynamics of neutrophils in response to bacterial infection in the bladder 
have been systematically investigated using murine models. Neutrophil infiltration typically 
peaks at 6 h post-infection, followed by a gradual decline in influx attributed to a reduction in 
bacterial load or response to anti-inflammatory cytokines (12).
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Figure 1. Dynamic response of innate immune cells in the infected bladder. A schematic representation elucidating various interactions among innate immune 
cells within the bladder upon infection by uropathogenic bacteria. The infection prompts an immediate mobilization of various innate immune cells, such as Mφ, 
neutrophils, mast cells, NK cells, innate lymphoid cells, and γδ T cells. This dynamic response is orchestrated through the action of cytokines and chemokines. 
The response can be categorized in 3 phases: (A) UPEC invasion is detected by PRRs on the BEC surface, such as TLR4 and TLR5, which trigger an expedited 
response involving the production of cytokines (IL-6, IL-8, SDF-1/CXCL12, and CX3CL1) and the secretion of AMPs. Neutrophil recruitment is prominently driven 
by SDF-1 and is further assisted by IL-17, TNF-α, CXCL1, CXCL2 and CXCL5. IL-8 helps in recruiting neutrophils, and IL-6 promotes the expression of CX3CL1, which 
then recruits Mφ. IL-6 also enhances AMP production. The resident Ly6C− Mφ secrete CXCL1 and MIF to recruit neutrophils and CCL2 to recruit Ly6C+ Mφ. Upon 
TNF-α stimulation, they also secrete CXCL2, which triggers neutrophils to secrete MMP9, aiding in the degradation of the basement membrane and initiating 
their transepithelial movement towards the site of infection. (B) Infected BECs secrete IL-1β to induce mast cell recruitment. Mast cells secrete TNF-α to recruit 
neutrophils and release chymases through degranulation which play a key role in the exfoliation of the infected BECs. However, as the infection progresses, they 
switch to a more immunomodulatory phenotype by secreting IL-10. (C) SDF-1 is a primary recruiter of NK cells during UPEC infection. NK cells secrete granulysin 
to induce bacterial death during UPEC infection. Both γδ T cells and ILC3 prominently recruit neutrophils via IL-17 secretion. 
BEC, bladder epithelial cell; SDF-1, stromal cell-derived factor 1; Mφ, macrophage; MMP9, matrix metalloproteinase-9; MIF, migration inhibitory factor.



Infiltrating neutrophils primarily exert antimicrobial effects through phagocytosis, using 
reactive oxygen species such as superoxide anion, hydrogen peroxide, hydroxyl radical, 
and hypochlorous acid, as well as neutral proteases such as elastase and cathepsin G, to 
intracellularly eradicate bacteria (13,14). CD300a, expressed on neutrophils, appears to 
trigger neutrophil activation and mediate UPEC killing via phagocytosis (15). Although the 
neutrophils infiltrating the site of infection possess intrinsic capabilities to kill pathogens, 
the signaling mechanism mediated by TLR4 and MyD88 triggers the secretion of pentraxin 
3 (PTX3), thereby enhancing the phagocytic ability of neutrophils against UPEC and directly 
influencing phagosome maturation (16). The bladders of PTX3-deficient mice exhibited a 
significantly higher number of bacteria than normal mice, highlighting the importance of the 
PTX3 gene in controlling infection (16). Additionally, clinical studies have further revealed an 
association between PTX3 gene polymorphisms and acute cystitis and pyelonephritis (16).

In response to TLR stimulation, neutrophils undergo degranulation, releasing azurophilic 
granules along with other granule types, that help eliminate microbes within tissues. During 
this process, neutrophils release nuclear and plasma membrane components, leading to the 
formation of chromatin scaffolds of neutrophil extracellular traps (NETs) (17). This scaffold 
efficiently captures and exerts antimicrobial activity against invading pathogens while also 
minimizing damage to the surrounding host cells. The DNA scaffold of NETs primarily 
contains histones, myeloperoxidase (MPO), elastase, and calprotectin, which exhibit 
both direct antimicrobial effects and pro-inflammatory effects (18). During the process of 
NETosis, which is triggered by stimuli such as LPS, histone citrullination can occur, leading 
to the secretion of these proteins (19). In a pyelonephritis mouse model, UPEC has been 
reported to evade innate immunity by secreting a virulence factor known as TcpC, thereby 
inhibiting NETosis (20). Such neutrophil NET formation holds clinical significance in 
patients with UTI, as evident by its presence in urine sediment, which readily decomposes 
structurally via deoxyribonuclease I, forming structures containing neutrophil effectors such 
as histones and MPO (21,22). In this context, pyuria, a common symptom in patients with 
UTIs, is observed as a result of the innate immune response aiming to eliminate the infecting 
pathogens and protecting the bladder tissues. Although neutrophils are effective immune 
effector cells against bacterial infections, they can also cause collateral damage to host cells. 
Therefore, innate immune cells have evolved precise mechanisms to regulate the recruitment 
and activity of neutrophils, enabling an immediate response to bacterial infections while 
limiting excessive neutrophil activity to minimize host tissue damage.

Macrophages
As the most abundant innate immune cells in the bladder, macrophages play a multifaceted 
role in protecting tissue from bacterial infection (23,24). The robust phagocytic capabilities 
of macrophages and dendritic cells are activated upon the infiltration of uropathogens 
subsequent to the breach of superficial epithelial cells within the bladder mucosa (Fig. 2). 
These bladder tissue resident macrophages phagocytose bacterial pathogens and regulate 
neutrophil influx during UTIs (25). Their sentinel role in pathogen recognition and direct 
killing mediated by pattern recognition receptors (PRRs) is key to reducing the initial 
bacterial burden during the early stages of infection. Although neutrophils are highly 
effective in killing pathogens, their antimicrobial substances are not pathogen-specific 
owing to the nature of innate immune cells. The nonspecific toxic substances released by 
neutrophils can induce bladder tissue damage and chronic inflammation (26). Therefore, 
finely tuned signaling cells are necessary to regulate neutrophil influx. Following recognition 
of UPEC through TLRs on bladder epithelial cells, IL-8 secretion induces neutrophil 
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recruitment to the infected epithelial cells (27). In addition, neutrophil influx is regulated in 
a more sophisticated manner by tissue-resident macrophages, enabling flexible responses to 
bacterial infections (28-30).

During bacterial infections, the host defense roles of resident macrophages located in the 
lamina propria and detrusor muscle of the bladder include effective pathogen clearance 
through phagocytic activity. The defensive function of macrophages against UPEC has been 
demonstrated in experiments depleting monocytes/macrophages using clodronate liposomes 
(30,31). Macrophages that predominantly reside in the lamina propria and detrusor muscle 
directly engage in phagocytic activity against UPEC present in bladder epithelial cells, with 
those in the muscle being more active in phagocytosing UPEC (25). Specifically, upon 
IL-6 stimulation, epithelial cells secrete CX3CL1, signaling macrophages to migrate to the 
infected urothelial cell layer, actively contributing to host defense (32). Macrophages employ 
CD14 as a coreceptor for PRRs to recognize gram-negative bacteria, thereby regulating the 
expression of cytokines associated with immune cell influx. Additionally, UPEC infection is 
exacerbated in CD14 knockout mice (31). Furthermore, in instances where UPEC infection 
occurs and IL-6 expression is sufficient, macrophages play a crucial role in creating an 
environment within the bladder that is unfavorable for UPEC growth by sequestering free 
irons (33). Therefore, macrophages facilitate a rapid response and clearance of pathogens 
near infected epithelial cells of the bladder mucosa.

However, in infected tissues with appropriate temperature and nutrient conditions, the 
rapid proliferation of pathogenic bacteria frequently exceeds the phagocytic capacity of 
macrophages. Therefore, to compensate for their limited function, macrophages swiftly 
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Figure 2. Phagocytes in the bladder mucosa exhibit a host-protective response by phagocytosing or contacting 
UPEC. C57BL/6 female mice were infected by intravesical instillation of the UPEC CI5 strain (1×108 CFU/mouse). 
After 6 h post-infection, the harvested mouse bladder was cryosectioned and stained with specific antibodies 
for confocal microscopic imaging. MHC class II-positive cells (red) migrate to the bladder mucosa (bright grey) 
where colonization by UPEC (green) has occurred. Scale bar: 20 μm.



induce a neutrophil influx into the infected tissue. Macrophages present in the lamina 
propria and detrusor muscle of the bladder comprise various subsets (25). Upon recognition 
of pathogens, Ly6C− macrophages secrete chemokines, recruiting neutrophils and 
Ly6C+ monocytes (or macrophages) into the bladder’s lamina propria (30). However, for 
neutrophils gathered in the lamina propria to reach the superficial epithelial cell layer, where 
the main infection occurs, they must traverse the basement membrane, which is densely 
structured with laminin and collagen IV, presenting a barrier to movement (30). Activated by 
TNF, Ly6C− macrophages secrete CXCL2, which promotes the release of metalloproteinase-9 
by neutrophils, thereby facilitating the degradation of the basement membrane and easing 
neutrophil passage (30). When combined, these regulatory mechanisms suggest that the 
sentinel function of macrophages primarily contributes by directing neutrophils to the 
epithelial layer in addition to directly killing pathogens, thereby contributing to host defense.

Macrophages distributed in the bladder exhibit distinct subsets based on their location, 
with RNA sequencing analysis revealing unique characteristics between those present in the 
lamina propria and those in detrusor layer (25). Particularly, lamina propria macrophages, 
being closer to the site of infection, exhibit higher expression of infection- and inflammation-
related genes. In contrast, detrusor layer macrophages display higher endocytic activity 
and anti-inflammatory properties, maintaining elevated expression of genes involved in 
lysosome formation (25). Consequently, following the resolution of bacterial infection, 
bladder macrophages undertake the removal of apoptotic neutrophils and pathogens, as well 
as mitigate unnecessary inflammatory responses, thereby assuming a flexible role in bladder 
infection control.

Mast cells
Mast cells are predominantly found in the lamina propria and detrusor of the bladder, with 
a significant portion distributed around blood vessels (34). During degranulation, mast cells 
release substances such as proteases (chymase, tryptase, and carboxypeptidase), histamine, 
and serotonin, which can induce various physiological responses. In particular, during UPEC 
infection, mast cell degranulation plays a crucial role in active immune defense. Upon UPEC 
infection, mast cells secrete chymase and tryptase into the epithelial cells of the bladder, 
directly contributing to the detachment of bladder epithelial cells and the disruption of the 
urothelial barrier (35,36). Bladder epithelial cells are the initial site of UPEC infection, and a 
significant portion of UPEC forms quiescent intracellular reservoirs within these cells, thereby 
contributing to recurrent infections. During this process, infected epithelial cells undergo 
exfoliation, previously attributed solely to cell death induced by UPEC infection (37). Recent 
findings suggest that epithelial exfoliation is facilitated by mast cell-derived chymase, which 
activates caspase-1 and induces cytolytic cell death, thereby promoting detachment. Notably, 
this phenomenon of infected epithelial cell exfoliation and urinary voiding represents an 
effective host defense mechanism that reduces the number of UPEC within the bladder.

An intriguing aspect of mast cells is their role in host defense during the early stages of 
infection by inducing exfoliation. However, as the infection progresses, these cells undergo 
a functional switch towards immunoregulation. During the late stages of infection, activated 
mast cells secrete various cytokines, including IL-10, among other cytokines, through 
de novo synthesis. Comparative studies of mast cell conditional knock-out mice that lack 
production of IL-10 and control mice revealed that IL-10 plays a key role in dampening 
adaptive immunity (38). Notably, in the absence of IL-10 secretion, mast cell conditional 
knock-out mice exhibited lower levels of persistent infection compared with control mice, 
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indicting their role in suppressing adaptive immunity while contributing to the maintenance 
of persistent infection (38). This shift in mast cell function from promoting exfoliation to 
regulating immune responses underscores the dynamic and context-dependent nature of 
mast cell-mediated host defense mechanisms during infection. In fact, the function of IL-10 
in suppressing adaptive immunity may not typically align with the host’s defense against 
bacterial infections. However, considering that mast cell chymase-mediated epithelial cell 
exfoliation disrupts the barrier function of the bladder through invasive defense mechanisms, 
the effect of IL-10 secretion in reducing inflammation can be considered to play a beneficial 
role in tissue regeneration. Bladder exfoliation, particularly resulting in the loss of barrier 
function, can lead to severe pain upon urine contact. Therefore, a series of processes 
aimed at inhibiting the inflammatory response can be considered a trade-off that does not 
significantly compromise bladder homeostasis.

Lastly, whether the time-delayed responses of mast cells represent sequential activation of 
different functions within a single mast cell population or if multiple distinct subsets of mast 
cells with opposing functions are involved remains unclear. Mast cell fate mapping studies 
have revealed morphological and transcriptomic differences between mast cells derived 
from the yolk sac and those derived from the bone marrow (39). Moreover, an analysis of 
mast cell populations using single-cell RNA sequencing has identified subsets of mast cells 
with distinct signature genes (40). While these findings suggest the presence of functionally 
diverse mast cell subsets, further research is required to determine whether these mast cell 
subsets elicit different responses during UPEC infection.

NK cells
NK cells are known for their crucial role in combating viral infections and suppressing 
tumors, but they have also been reported to play a role in host defense against bacterial 
infections. This defensive function extends to both intracellular and extracellular bacterial 
infections, with well-documented roles in defending against pathogens such as Bacillus and 
Mycobacterium (41-43). The host defense function of NK cells during UTIs caused by UPEC 
is also known to be significant (44). During UTI infection, bladder epithelial cells secrete 
stromal cell-derived factor 1, initiating immune cell influx, including recruitment of NK 
cells (45,46). NK cells secrete cytotoxic factors such as perforin, granzyme, and granulysin, 
which induce damage and distortion of bacterial cell walls, suppress energy generation, and 
exhibit antibacterial effects against pathogenic bacteria (42). Specifically, FimH component 
of UPEC’s type I fimbriae acts as a ligand for TLR4, leading to activation of NK cells through 
the downstream signaling mechanism involving TLR4-MyD88. This activation results in 
the secretion of TNF-α by NK cells (44,47), which in turn plays a crucial role in controlling 
bacterial bladder infections in the body (44). Interestingly, researchers observed that 
depletion of NK cells by using an NK cell-neutralizing antibody did not impact the bacterial 
clearance in the infected bladder (48). However, NK cells secrete cytokines such as IFN-γ 
and GM-CSF, creating an inflammatory environment that helps maintain effective immune 
regulation (49,50).

Secretion of hemolysin A by UPEC significantly impairs the host defense function of NK 
cells, primarily attributed to the cytotoxicity of hemolysin A (44). Hemolysin A secretion 
by UPEC is a strategy to evade host defense being mounted by the innate immune cells. 
However, whether NK cells exhibit their intrinsic function, such as controlling the number 
of intracellular bacteria, during bladder infections has not been reported. Although NK 
cells are well-known for their role in viral infections, which involves secretion of IFN-γ and 
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inducing the death of infected host cells containing intracellular pathogens, there is currently 
no evidence from animal studies demonstrating whether NK cells regulate quiescent 
intracellular bacterial niches or control persistent infection by uropathogens. However, 
it is plausible that the normal function of NK cells in overcoming intracellular survival 
by uropathogens contributes to the recovery of several patients who do not progress to 
persistent or rUTIs. However, experimental data to prove this hypothesis is lacking.

ILCs
ILCs lack antigen-specific receptors of T cells and secrete specific cytokines to activate or 
modulate mucosal immunity. Residing mainly on the mucosal surfaces of intestine or lungs, 
ILCs rapidly respond to pathogenic infections and regulate immune cell functions to play a 
defensive role against infections (51). Although their role in the bladder has been recently 
understood, bladder-resident ILC subsets mainly consist of ILC2 and ILC3, with ILC1 present 
in smaller numbers (52). In particular, bladder ILC3 exhibits a cellular phenotype similar to 
CCR6+NKp46-LTi cells (48,52). During UPEC infection, ILC3 is believed to play a primary 
defensive role, as evidenced by increased UPEC burden in ILC3-deficient mice, highlighting 
the importance of bladder-resident ILC3 in UPEC infection (52). Single-cell RNA sequencing 
analysis of UPEC-infected mouse bladders revealed ILC3 as one of the IL-17 producers, 
indicating the crucial role of ILC3-mediated type 17 immunity in host defense, alongside γδ T 
cells and Th17 cells (53).

During UPEC infection of the bladder, concurrent functions of neutrophil influx mediated 
by ILC3-IL17A and macrophage-mediated neutrophil influx in the lamina propria can 
be considered to have overlapping roles. Additionally, it also serves as evidence of the 
significance of neutrophil influx in response to bacterial infection. Nevertheless, it is 
necessary to examine the differences in the role of IL-17A in these 2 distinct influx pathways. 
While Th17 cells can effectively respond to UPEC infections through IL-17 production, the 
time constraints involved in induction of adaptive immunity by Th17 cells against bacterial 
infections may necessitate entrusting this function to innate immune cells, reflecting a 
natural design in the body.

IL-17 stimulates epithelial, endothelial, and fibroblast cells to produce chemokines (CXCL1, 
CXCL2, and CXCL8), directly promoting neutrophil recruitment. Additionally, IL-17-
stimulating endothelial cells increase the expression of ICAM-1, facilitating an easy migration 
of neutrophils across the endothelial barrier to the site of infection. Neutrophils recruited 
to the site of infection not only serve as survival signals but also enhance the bactericidal 
activity against the pathogens they encounter. Through these host defense mechanisms, 
IL-17 plays a crucial role in defending against UPEC, a pathogen commonly responsible for 
bladder infections. However, if IL-17 is not properly regulated after the resolution of bladder 
infection, it may lead to the development of various bladder diseases.

IL-17 dysregulation has been associated with excessive neutrophil accumulation in various 
organs, contributing to inflammatory autoimmune diseases such as psoriasis, rheumatoid 
arthritis, and inflammatory bowel disease (50,54). In the bladder, an increase in IL-17 
levels has been reported in some disease conditions, most notably interstitial cystitis (55). 
Interstitial cystitis is a chronic condition characterized by bladder pain, urinary frequency, 
and urgency, with no clear known cause. However, elevated IL-17 levels in some interstitial 
cystitis patients suggest a potential association between IL-17-mediated inflammation and 
the pathophysiology of the disease. While interstitial cystitis is not typically associated with 
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infections, numerous patients diagnosed with interstitial cystitis have a history of recurrent 
bladder infections (56). Dysregulation of IL-17 signaling following previous infections could 
potentially lead to symptoms of interstitial cystitis after the infection has resolved. However, 
systematic studies are required to further investigate this relationship. In summary, IL-17 
plays a crucial role in mediating immune responses at inflammatory and infection sites 
by recruiting neutrophils, but its dysregulation can also contribute to the pathology of 
inflammatory diseases.

γδ T cell
γδ T cells occur in peripheral tissues such as the skin, intestines, and lungs, and they are also 
present in significant numbers in the bladder. For instance, in uninfected murine bladders, 
they constitute 1%–4% of the immune cell population (23). Strategically positioned to 
swiftly respond to invading bacterial pathogens that breach these barriers, these cells are 
characterized by their ability to rapidly produce large amounts of cytokines, exerting an 
influence on the surrounding cells and tissues. Notably, γδ T cells have been reported as 
a major source of IL-17 production in the bladder (57). As previously stated, IL-17 plays a 
crucial role in neutrophil-mediated bacterial defense, making γδ T cell deficiency in mice 
phenotypically associated with decreased host defense against bacteria (57,58). Following 
UPEC infection, IL-17A is secreted in the bladder of infected mice as part of the innate 
immune response, contributing to host defense efficacy by reducing bacterial burden, as 
evidenced by studies using IL-17A−/− mice or anti-IL-17 neutralizing antibody mediated IL-17 
depletion (48,57). Furthermore, IL-17A−/− mice exhibit a sharp decrease in the number of 
neutrophils infiltrating the infected bladder, resulting in a diminished host protective role 
against bacterial infections (57).

Given the predominant presence of γδ T cells in the bladder mucosa, we can reasonably 
anticipate their direct response upon the initiation of UPEC invasion into the epithelial layer. 
γδ T cells recognize non-peptide antigens via the γδ TCR or are activated by stress-induced 
signals. However, the mechanisms through which they recognize UPEC or how UPEC, while 
forming quiescent intracellular reservoirs in host epithelial cells, induces stress signals 
that may be associated with γδ T cell activation are not well understood. Further research 
is required to determine whether γδ T cells are activated directly by stress-induced signals 
during UPEC infection.

Natural Killer T (NKT) cells
CD1d-restricted NKT cells play a crucial role in host defense against pathogens through 
innate immunity. When activated by α-galactosylceramide (α-GalCer), they possess the 
ability to eliminate bacterial infection, as demonstrated in UTIs caused by pathogen such 
as methicillin-resistant Staphylococcus aureus (59). In a UTI mouse model, administration of 
α-GalCer prior to bacterial infection resulted in robust preventive antimicrobial effects, 
which were attributed to the direct involvement of IL-12, IFN-γ, and TNF-α (59). While this 
study primarily observed the defensive function of NKT cells in an activated state induced 
by α-GalCer rather than direct activation of NKT cells in response to UTIs, the findings 
hinted at the correlation between cytokine secretion and type I response, potentially leading 
to antimicrobial effects. Although this study did not specifically investigate the specific 
mechanisms underlying the protective effects of cytokine production against bacterial 
infections, it is conceivable that similar mechanisms, such as enhanced phagocytosis by 
alveolar macrophages mediated by IFN-γ upon NKT cell activation in pulmonary infections 
(60), may also operate in UTIs. Further research is warranted to elucidate the precise 
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mechanisms by which cytokines contribute to host defense against UTIs mediated by NKT 
cell activation.

Urothelial cells
The expression of uroplakin by bladder umbrella cells facilitates the attachment of UPEC 
fimbriae, thereby promoting infection, with the attached UPEC serving as a reservoir for 
persistent infection within the epithelial cells (61,62). While playing a role in providing 
a foothold for infection, bladder epithelial cells also actively engage in various defense 
strategies against infection by directly participating in innate immunity.

First, these defense mechanisms are facilitated by the presence of PRRs, which serve to 
alert bladder epithelial cells to the onset of infection (63). Particularly in UTIs, TLRs play 
a pivotal role as they recognize microbial components and initiate intracellular signaling, 
thereby triggering the secretion of various cytokines, chemokines, and AMPs. Although TLR4 
and TLR5 are widely recognized as the most crucial subfamily members for host defense 
against UTIs, TLR2 and TLR11 also contribute to these functions to some extent (64). The 
significant decline in the ability of TLR4−/− mice to clear pathogenic bacteria from the bladder 
underscores the pivotal role of TLR4-mediated host responses in determining susceptibility 
to UTIs. While LPS is well-known as a pathogenic factor of UPEC that stimulates TLR4, other 
UPEC components such as FimH adhesin, type I, and P fimbriae can also be recognized by 
TLR4 (65,66). Furthermore, TLR5−/− mice are significantly more susceptible to UPEC due to a 
limited cytokine and chemokine response to flagellin during UPEC infection (67). Therefore, 
bladder epithelial cells seem to be designed to ensure host defense through a robust innate 
immune response by recognizing various types of pathogen-associated molecular patterns 
from UPEC.

Stimulation of TLRs in bladder epithelial cells triggers the production of cytokines that play 
a pivotal role in initiating innate immune responses. Among these cytokines, ILs have been 
extensively studied for their direct involvement. Specifically, IL-6 facilitates the activation 
of transcription factors, leading to the expression of AMPs such as Hamp, RegIIIβ, and 
RegIIIγ in the bladder epithelium (68). AMPs such as β defensin 1 (69,70), cathelicidin (71), 
and ribonuclease 7 (72) contribute to the formation of an antimicrobial barrier, thereby 
preventing microbial colonization and providing mucosal immunity. IL-8, also known 
as CXCL8, is a chemokine that is directly involved in the recruitment of neutrophils and 
is secreted, in response to TLR4 stimulation in bladder epithelial cells, serving as a key 
chemokine that forms a chemotactic gradient to facilitate the transepithelial migration 
of neutrophils into the infected bladder epithelial layer (73,74). Particularly, mice with 
deletion mutations in IL-8 receptor homologues experienced significant challenges in 
bacterial clearance in the bladder and kidneys, whereas patients with low expression of 
CXC chemokine receptor 1 exhibited a higher incidence of acute pyelonephritis, indicating 
a clinical association (74). Through these mechanisms, bladder epithelial cells play a role 
in inhibiting the formation of intracellular bacterial communities (IBCs) and ultimately 
contributing to direct UPEC clearance.

Bladder epithelial cells not only defend against bacteria through the influx of immune 
cells but also exert a physical defense mechanism by expelling pathogens outside the cell. 
Specifically, a considerable number of epithelial cells often expel intracellular UPEC that 
invades them. TLR4, stimulated by LPS, regulates this active defense mechanism (64,75). In 
other words, UPEC that invades bladder epithelial cells initially resides in Rab27b+ vesicles 
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within the cell. Upon stimulation of TLR4, increased cAMP levels cause exocytosis of Rab27b+ 
vesicles containing UPEC, expelling the bacteria outside the cell (64). In addition, epithelial 
cells possess a second system for expelling intracellular UPEC outside the cell, which involves 
the mucolipin TRP channel 3. This mechanism facilitates the exocytosis of UPEC hidden in 
lysosomes, by expelling the bacteria outside the cell enclosed in exosomes (76). The existence 
of multiple pathways for expelling intracellular bacteria from bladder epithelial cells 
potentially serves as a series of defense mechanisms aimed at removing persistent UPEC, 
which demonstrates a strong ability to form IBCs.

Finally, lysosomal proteases present within epithelial cells also play a crucial role in bacterial 
defense. Despite the mechanisms of intracellular bacterial expulsion, these lysosomal 
proteases can be understood as a resistance mechanism against bacteria causing persistent 
infection within the cells. Specifically, cathepsin, one of the proteases expressed in epithelial 
cells, possesses bactericidal effects. Considering the higher bacterial burden in cathepsin-/- 
epithelial cells, it can be interpreted as a direct host defense mechanism (77). Furthermore, 
a recent study has shown that cathepsin D expression is not only regulated by commensal 
bacteria present in the bladder but also increases when Lactobacillus crispatus is introduced 
into the bladder, thereby enhancing host defense against UPEC (78). Taken together, we can 
conclude that bladder epithelial cells, employ various strategies to protect against infection, 
adapting their defense mechanisms based on the timing and location of the infection.

CONCLUSION

Various pathogens can infect the urinary tract, but protection against bacterial infections 
requires a rapid host response compared to viral or fungal infections. This is because 
bacterial pathogens proliferate rapidly under suitable conditions, necessitating a vigorous 
innate immune response in the urinary tract during the initial stages of infection. The 
role of innate immune cells during UTIs is summarized in Table 1. Responses such as 
bacterial expulsion by bladder epithelial cells or the secretion of AMPs serve as host defense 
mechanisms to reduce the number of pathogens in the epithelial cell layer during the early 
stages of infection. Despite these initial responses, pathogens adapt to colonize and invade 
epithelial cells, prompting various components of the innate immune system to act, with 
neutrophils playing a pivotal role. Tissue-resident macrophages, γδ T cells, urothelial cells, 
mast cells, and other immune cells employ different strategies, ultimately aiming to recruit 
neutrophils to the site of infection, where they exhibit bactericidal effects against invading 
pathogens. Despite the stepwise responses of innate immune cells against UTIs, chronic 
infection may arise, possibly due to bacterial persistence within the urothelial cells during 
the initial stages of infection. Understanding why bacteria causing intracellular infections 
evade immune cells involved in adaptive immunity requires the establishment of appropriate 
animal models and the use of various immunological analysis methods. Despite the stepwise 
responses of innate immune cells to UTIs, chronic infection may occur, possibly attributed 
to pathogens hiding within urothelial cells during the initial stages of infection. Therefore, 
activating the innate immune response through various methods during the early stages of 
infection may serve as a crucial rate-limiting factor in preventing the exacerbation of chronic 
bladder infections.

Although antibiotic treatment is currently the best option for UTIs, several therapeutic 
options that boost the activation of host innate immunity are under investigation with the 
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hope of reducing antibiotic resistance. One promising therapeutic approach involves utilizing 
commensal microbiota residing in the bladder. Studies have shown that commensal bacteria 
strains, such as Lactobacillus crispatus, have been effective in preventing the predominance 
of UTI-causing strains. This is achieved by augmenting the elimination of intracellular 
UPEC via the secretion of type I IFNs. These IFNs have downstream effects on infected 
bladder epithelial cells, enhancing the acidity and degradative proficiency of lysosomes 
that harbor UPEC (78). Another potential approach involves combining local vaccination 
with Th1-skewing adjuvants, which stimulate innate immune receptors, such as TLRs, on 
dendritic cells and B cells. Administration of UPEC lysates or a prominent UPEC antigen 
alongside the Th1-skewing adjuvant CpG oligodeoxynucleotides has shown significant 
bacterial clearance in infected bladders. This treatment also yielded promising results in 
mice with rUTI, indicating potential as a therapeutic tool for recurrent cases (87). More 
in-depth studies focusing on UTI pathogenesis and innate immune responses are needed 
to design therapeutics that can stimulate immune responses while complementing existing 
treatments. These refined strategies could provide more effective solutions against UPEC 
infections and prevent their progression to rUTIs.
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