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ABSTRACT

Complement C5a receptor (C5aR) signaling in immune cells has various functions, inducing 
inflammatory or anti-inflammatory responses based on the type of ligand present. The 
Co1 peptide (SFHQLPARSRPLP) has been reported to activate C5aR signaling in dendritic 
cells. We investigated the effect of C5aR signaling via the Co1 peptide on macrophages. In 
peritoneal macrophages, the interaction between C5aR and the Co1 peptide activated the 
mTOR pathway, resulting in the production of pro-inflammatory cytokines. Considering 
the close associations of mTOR signaling with IL-6 and TNF-α in macrophage training, our 
findings indicate that the Co1 peptide amplifies β-glucan-induced trained immunity. Overall, 
this research highlights a previously underappreciated aspect of C5aR signaling in trained 
immunity, and posits that the Co1 peptide is a potentially effective immunomodulator for 
enhancing trained immunity.

Keywords: Adjuvants, immunogenic; C5a receptor; Immunomodulator; Inflammation; 
Trained immunity

INTRODUCTION

The complement system is integral to the host defense mechanism, contributing significantly 
to pathogen clearance and facilitating the connection between innate and adaptive immunity 
(1). Key outcomes of complement activation include the formation of the membrane attack 
complex, which directly targets pathogens, and the production of anaphylatoxins (C3a and 
C5a). These anaphylatoxins interact with their respective receptors, C3a receptor (C3aR) 
and C5a receptor (C5aR), to promote the generation of proinflammatory cytokines and 
the chemotactic recruitment of various immune cells (2). Notably, C5a-C5aR signaling 
has variable effects based on the cell type and ligands involved (3). For instance, while 
C5a reduces IL-6 and TNF expression in LPS-stimulated macrophages, it enhances anti-
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inflammatory cytokine production in monocytes (4,5). In addition, C5a-licensed renal 
macrophages play a crucial role in protecting against systemic Candida infections by inhibiting 
the mTOR complex 1 signaling triggered by Candida. Conversely, C5a-C5aR signaling in 
alveolar macrophages induces an apoptotic response through the degradation of BCL-2 (6,7).

The mTOR signaling pathway in monocytes/macrophages plays a pivotal role in macrophage 
training. This phenomenon is closely associated with the development of trained immunity in 
vivo, where innate immune cells develop immunological memory (8). For instance, priming 
macrophages with β-glucan from Candida albicans activates the mTOR pathway, leading to 
epigenetic reprogramming and heightened responsiveness, such as increased IL-6 and TNF-α 
expression upon subsequent stimulation (9). The concept of macrophage training aligns 
with observations in vaccine-induced trained immunity. For example, the Bacillus Calmette-
Guérin (BCG) vaccine offers broad protection against various pathogens by enhancing 
trained immunity in different immune compartments, including hematopoietic progenitors 
and mucosal areas (10,11). This concept is being explored for the development of trained 
immunity-based vaccines (TIbVs) and epigenetic adjuvants, particularly to boost antiviral 
immunity during pandemics (12).

In a previous study, we identified the Co1 peptide (SFHQLPARSPLP), which interacts with 
C5aR using a phage display library, and demonstrated that activation of C5aR by the Co1 
peptide triggers ROS and chemokine production in monocyte-derived dendritic cells in 
Peyer’s patches (13-15). However, the specific effects of C5aR-Co1 signaling on macrophages 
have not been fully explored. This study aims to elucidate how the Co1 peptide induces 
macrophage training through C5aR signaling-mediated activation of the mTOR pathway. Our 
results suggest a potential role for the Co1 peptide as an epigenetic adjuvant, expanding its 
use in immunomodulation and vaccine development.

MATERIALS AND METHODS

Experimental materials and cells
All chemicals and laboratory wares used in this study were acquired from Sigma-Aldrich 
(St. Louis, MO, USA) and SPL Life Sciences (Pocheon, Korea), unless noted otherwise. The 
murine macrophage cell line RAW 264.7 (30 passages) was sourced from the Korean Cell 
Line Bank (Seoul, Korea). These cells (<40 passages) were cultured in DMEM (Welgene, 
Gyeongsan, Korea) supplemented with 10% heat-inactivated FBS (Hyclone, Logan, UT, USA) 
and incubated at 37°C in a 5% CO2 atmosphere.

Arrays
RAW 264.7 cells were either treated with the C5aR antagonist W54011 (10 μM; R&D 
Systems, Minneapolis, MN, USA) or left untreated, followed by stimulation with Co1 
peptide (1 μM or 22 μM; Peptron, Yusung, Korea) for 15 min. After treatment, the cells 
were washed, and total proteins were extracted from lysates homogenized in lysis buffer 
containing both protease and phosphatase inhibitor cocktails. The levels of total protein 
were determined using the Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, 
Rockford, IL, USA). Phosphorylation arrays were conducted using the Human/Mouse AKT 
Pathway Phosphorylation Array C1 (Raybiotech, Peachtree Corners, GA, USA) as per the 
manufacturer’s instructions. Mean pixel intensity for these arrays was quantified using 
ImageJ software. Briefly, background signals were subtracted from experimental spot signals, 
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and the data were normalized to the positive control spot signals on the control array. The 
following formula was used to normalize signal intensity:

X(N2)=X2×P1÷P2

P1, mean signal density of positive control spots on the control array; P2, mean signal density 
of positive control spots on the experimental array; X2, signal intensity of spot X on the 
experimental array; X(N2), normalized signal intensity of spot X on the experimental array.

Western blotting analysis
RAW 264.7 cells were pretreated for 1 h with or without rapamycin (20 nM) and then 
stimulated with Co1 peptide (1 μM or 22 μM) for 15 min. Total protein concentration in the 
cell lysates was determined using the Pierce™ BCA Protein Assay Kit. Following this, 20 
µg total protein samples were subjected to SDS-PAGE and transferred onto polyvinylidene 
fluoride membranes. These membranes were blocked with 5% nonfat dry milk in Tris-
buffered saline with 0.1% Tween 20 and then incubated with the specified primary Abs (Cell 
Signaling Technology, Danvers, MA, USA). This was followed by incubation with HRP-
conjugated anti-mouse Abs (Cell Signaling Technology).

In vitro-trained immunity model using peritoneal macrophages
To isolate peritoneal macrophages, initially, 5 mL of medium (5% FBS/Dulbecco’s PBS 
[DPBS]) were injected into the peritoneal cavity; this injection was followed by gentle 
abdominal massage to dislodge attached peritoneal cells into the medium. The medium 
was collected by aspiration. Red blood cells were lysed with ACK solution (Thermo Fisher 
Scientific), and macrophages were enriched using a Macrophage Enrichment Kit (Miltenyi 
Biotec, Bergisch Gladbach, Germany) in accordance with the manufacturer’s instructions. 
Enriched peritoneal macrophages were incubated for 2 h, and non-adherent cells were 
removed by gentle washing with DPBS. The remaining cells were treated with the indicated 
factors for 24 h, then washed and incubated in culture medium for 3 days. On day 4, the cells 
were primed with IFN-γ (25 ng/mL; R&D Systems) for 12 h. Subsequently, the cells were 
stimulated with LPS (1 µg/mL, LPS-EK Ultrapure; InvivoGen, San Diego, CA, USA) for 4 h, 
and supernatants were collected for the measurement of cytokine concentrations (16).

In vivo-trained immunity mouse model
Specific pathogen-free female BALB/c mice, 8-wk-old, were acquired from Koatech 
Laboratory Animal Center (Pyeongtaek, Korea). The mice were housed and cared for in 
accordance with the guidelines of the Animal Center of Jeonbuk National University. Ethical 
approval for all experimental procedures was granted by the Institutional Animal Care 
and Use Committee of Jeonbuk National University (approval No. NON2023–216). For the 
training phase, BALB/c mice were intraperitoneally primed and boosted with either β-glucan 
(1 mg; InvivoGen) or Co1 peptide (100 µg), followed by a challenge with LPS (InvivoGen) on 
day 7 (16).

Cytokine assay
Cytokine concentrations in culture supernatant and serum samples were quantified using the 
LEGENDplex™ Mouse Macrophage/Microglia Panel (BioLegend, San Diego, CA, USA) and 
BD™ Cytometric Bead Array, in accordance with the manufacturer’s instructions.
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Statistical analysis
Prism 10 (GraphPad Software, Boston, MA, USA) was used for statistical analysis. One-way 
ANOVA was used to determine statistical significance among different groups. Differences 
between groups were considered significant at p<0.05.

RESULTS AND DISCUSSION

C5aR-Co1 peptide signaling activates Akt/mTOR signaling pathway in 
macrophages
Previous research has demonstrated that C5aR-C5a signaling influences the mTOR pathway 
in renal macrophages during Candida infection (6). To investigate the potential modulation of 
mTOR signaling in macrophages by C5aR signaling induced by its ligand, the Co1 peptide, 
we analyzed the phosphorylation of serine/threonine kinase Akt and mTOR pathway-related 
proteins in RAW264.7 cells after Co1 peptide treatment (Fig. 1). Further, to establish the 
phosphorylation as a result of C5aR-mediated signaling, we compared the phosphorylation 
pattern following the blockage of C5aR signaling using a C5aR antagonist (W54011) (Fig. 1A). 
Co1 peptide stimulation induced phosphorylation of Akt and mTOR, leading to subsequent 
phosphorylation of p70S6K (ribosomal protein S6 kinase) and enhancing protein synthesis 
through ribosomal protein S6 (RPS6) phosphorylation. The increase in phosphorylation was 
reduced upon C5aR signaling inhibition, affirming that Akt/mTOR activation is contingent 
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Figure 1. Activation of Akt/mTOR signaling pathway in macrophages by C5aR-Co1 peptide signaling. (A) RAW264.7 cells were treated with each indicated 
molecule for 15 min. The panel displays array data and densitometry results for p-AKT, p-mTOR, p-P70S6, and p-RPS6 in RAW264.7 cell lysates. Bar graph 
shows the mean of replicated spots in the array for indicated molecules. Data are representative of three independent experiments. (B) RAW264.7 cells were 
preincubated with or without rapamycin for 1 h, followed by treatment with each indicated molecule. Bar graph shows the level of p-S6 normalized to total S6 
protein. Data are representative of three independent experiments. (C) The schematic shows our hypothesis that C5aR-Co1 peptide signaling activates the mTOR 
signaling pathway.



on C5aR-Co1 peptide signaling. However, as shown in the bottom panel of Fig. 1B, this 
inhibition of phosphorylation by W54011 was absent in RPS6. To corroborate that C5aR-Co1 
peptide signaling activates the mTOR pathway, we evaluated RPS6 phosphorylation levels 
under conditions with mTOR signaling inhibited by rapamycin. Consistent with results 
for the other mTOR signaling proteins upon W54011 antagonist treatment, Co1-induced 
RPS6 phosphorylation was abolished by rapamycin (Fig. 1B). Thus, our data demonstrate 
that C5aR-Co1 peptide signaling initiates the mTOR signaling pathway in macrophages, as 
depicted in Fig. 1C.

C5aR-Co1 peptide signaling induces in vitro peritoneal macrophage training 
via the mTOR pathway
The canonical mTOR signaling pathway is implicated in macrophage training, leading to the 
production of pro-inflammatory cytokines (17). To determine whether C5aR-Co1 signaling 
induces macrophage training via mTOR signaling, we analyzed cytokine expression in 
peritoneal macrophages trained with β-glucan, C5a, or the Co1 peptide, as previously described 
(Fig. 2A) (16). Activation of C5aR signaling by C5a (100 nM) or Co1 peptides (7.3 µM) resulted 
in the upregulation of pro-inflammatory cytokines (IL-6 and TNF-α), compared with the PBS 
group (Fig. 2). Moreover, this enhancement was inhibited by rapamycin (Fig. 2). Therefore, we 
hypothesized that C5aR-Co1 peptide signaling may facilitate macrophage training, as depicted 
in Fig. 2B.

C5aR-Co1 peptide signaling enhances in vivo β-glucan-induced macrophage 
training
To investigate the function of C5aR-Co1 peptide in an in vivo training model, mice were 
trained with the indicated factors, and subsequently challenged with LPS, as previously 
described (16). Upon LPS challenge, the serum levels of IL-6 and TNF-α were elevated in 
mice trained with β-glucan, indicative of trained immunity (16). Although repeated training 
with Co1 peptide alone did not lead to increased serum levels of IL-6 and TNF-α, sequential 
training with β-glucan followed by Co1 peptide resulted in elevated cytokine levels, 
comparable to those in the group trained twice with β-glucan (Fig. 3). This suggests that 
C5aR-Co1 peptide signaling can augment β-glucan-mediated macrophage training.
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C5a receptor signaling has varied effects on immune cells, inducing inflammatory or anti-
inflammatory responses depending on the ligand type. Activation of C5aR with C5a promotes 
inflammation and chemotaxis, whereas interaction with chemotaxis inhibitory proteins of 
Staphylococcus aureus (CHIPS) impedes phagocytic cell recruitment (18). This study focuses on 
the role of C5aR-Co1 peptide signaling in macrophage training and trained immunity.

TIbVs
In contrasting with traditional vaccines that trigger Ag-specific adaptive immune responses, 
TIbVs enhance resistance to a wide range of pathogens (19). A recent study reported that 
a ‘protein-free vaccine’ consisting of aluminum hydroxide, monophosphoryl lipid A, and 
fungal mannan can protect against nosocomial pathogens such as methicillin-resistant 
Staphylococcus aureus without inducing Ag-specific immunity (20). BCG vaccination also 
confers protection against lethal influenza virus and SARS-CoV-2 challenges through MyD88 
signaling activation (21). Agents capable of inducing trained immunity could serve as 
preventive measures against various pathogens and/or as immune adjuvants when combined 
with specific Ags (22). Notably, our study suggests that the Co1 peptide can train innate 
immunity, highlighting its potential as an anti-infectious agent or adjuvant for eliciting 
trained immunity.
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