DOI QR코드

DOI QR Code

Exploring the therapeutic potential: Apelin-13's neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington's disease

  • Shaysteh Torkamani-Dordshaikh (Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences) ;
  • Shahram Darabi (Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences) ;
  • Mohsen Norouzian (Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences) ;
  • Reza Bahar (Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences) ;
  • Amirreza Beirami (Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences) ;
  • Meysam Hassani Moghaddam (Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences) ;
  • Mobina Fathi (Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences) ;
  • Kimia Vakili (Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences) ;
  • Foozhan Tahmasebinia (Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences) ;
  • Maryam Bahrami (Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company) ;
  • Hojjat Allah Abbaszadeh (Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences) ;
  • Abbas Aliaghaei (Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences)
  • 투고 : 2023.12.01
  • 심사 : 2024.05.20
  • 발행 : 2024.09.30

초록

Huntington's disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP. Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group. Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group. Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.

키워드

과제정보

This work was financially supported by Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran (registration no: 43002663).

참고문헌

  1. Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New avenues for the treatment of Huntington's disease. Int J Mol Sci 2021;22:8363.
  2. Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The incidence and prevalence of Huntington's disease: a systematic review and meta-analysis. Mov Disord 2012;27:1083-91. https://doi.org/10.1002/mds.25075
  3. Rawlins MD, Wexler NS, Wexler AR, Tabrizi SJ, Douglas I, Evans SJ, Smeeth L. The prevalence of Huntington's disease. Neuroepidemiology 2016;46:144-53. https://doi.org/10.1159/000443738
  4. Kay C, Collins JA, Wright GEB, Baine F, Miedzybrodzka Z, Aminkeng F, Semaka AJ, McDonald C, Davidson M, Madore SJ, Gordon ES, Gerry NP, Cornejo-Olivas M, Squitieri F, Tishkoff S, Greenberg JL, Krause A, Hayden MR. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. Am J Med Genet B Neuropsychiatr Genet 2018;177:346-57. https://doi.org/10.1002/ajmg.b.32618
  5. Liu JP, Zeitlin SO. Is Huntingtin dispensable in the adult brain? J Huntingtons Dis 2017;6:1-17. https://doi.org/10.3233/JHD-170235
  6. Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, Mao K, Lau AL, Yeung SY, Humbert S, Saudou F, Klionsky DJ, Finkbeiner S, Zeitlin SO, Marsh JL, Housman DE, Thompson LM, Steffan JS. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 2014;111:16889-94. https://doi.org/10.1073/pnas.1420103111
  7. Semaka A, Kay C, Doty C, Collins JA, Bijlsma EK, Richards F, Goldberg YP, Hayden MR. CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J Med Genet 2013;50:696-703. https://doi.org/10.1136/jmedgenet-2013-101796
  8. Dayalu P, Albin RL. Huntington disease: pathogenesis and treatment. Neurol Clin 2015;33:101-14. https://doi.org/10.1016/j.ncl.2014.09.003
  9. Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington's disease. Eur J Neurosci 2008;27:2803-20. https://doi.org/10.1111/j.1460-9568.2008.06310.x
  10. Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 2005;6:919-30. https://doi.org/10.1038/nrn1806
  11. Nance MA. Huntington disease: clinical, genetic, and social aspects. J Geriatr Psychiatry Neurol 1998;11:61-70. https://doi.org/10.1177/089198879801100204
  12. O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 1993;136:355-60. https://doi.org/10.1016/0378-1119(93)90495-O
  13. Langelaan DN, Bebbington EM, Reddy T, Rainey JK. Structural insight into G-protein coupled receptor binding by apelin. Biochemistry 2009;48:537-48. https://doi.org/10.1021/bi801864b
  14. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF. The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq Bras Cardiol 2008;90:343-9.
  15. Niknazar S, Abbaszadeh HA, Peyvandi H, Rezaei O, Forooghirad H, Khoshsirat S, Peyvandi AA. Protective effect of [Pyr1]- apelin-13 on oxidative stress-induced apoptosis in hair cell-like cells derived from bone marrow mesenchymal stem cells. Eur J Pharmacol 2019;853:25-32. https://doi.org/10.1016/j.ejphar.2019.03.012
  16. Khoshsirat S, Abbaszadeh HA, Peyvandi AA, Heidari F, Peyvandi M, Simani L, Niknazar S. Apelin-13 prevents apoptosis in the cochlear tissue of noise-exposed rat via Sirt-1 regulation. J Chem Neuroanat 2021;114:101956.
  17. Li Y, Bai YJ, Jiang YR, Yu WZ, Shi X, Chen L, Feng J, Sun GB. Apelin-13 is an early promoter of cytoskeleton and tight junction in diabetic macular edema via PI-3K/Akt and MAPK/Erk signaling pathways. Biomed Res Int 2018;2018:3242574.
  18. Luo H, Han L, Xu J. Apelin/APJ system: a novel promising target for neurodegenerative diseases. J Cell Physiol 2020;235:638-57. https://doi.org/10.1002/jcp.29001
  19. Abbaszadeh HA, Tiraihi T, Delshad A, Saghedizadeh M, Taheri T, Kazemi H, Hassoun HK. Differentiation of neurosphere-derived rat neural stem cells into oligodendrocyte-like cells by repressing PDGF-α and Olig2 with triiodothyronine. Tissue Cell 2014;46:462-9.
  20. Ziaeipour S, Ahrabi B, Naserzadeh P, Aliaghaei A, Sajadi E, Abbaszadeh HA, Amini A, Abdi S, Darabi S, Abdollahifar MA. Effects of Sertoli cell transplantation on spermatogenesis in azoospermic mice. Cell Physiol Biochem 2019;52:421-34. https://doi.org/10.33594/000000030
  21. Darabi S, Noori-Zadeh A, Rajaei F, Abbaszadeh HA, Bakhtiyari S, Roozbahany NA. SMER28 attenuates dopaminergic toxicity mediated by 6-hydroxydopamine in the rats via modulating oxidative burdens and autophagy-related parameters. Neurochem Res 2018;43:2313-23. https://doi.org/10.1007/s11064-018-2652-2
  22. Browne SE, Beal MF. Oxidative damage in Huntington's disease pathogenesis. Antioxid Redox Signal 2006;8:2061-73. https://doi.org/10.1089/ars.2006.8.2061
  23. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 2008;45:667-78. https://doi.org/10.1016/j.freeradbiomed.2008.05.014
  24. O'Donnell LA, Agrawal A, Sabnekar P, Dichter MA, Lynch DR, Kolson DL. Apelin, an endogenous neuronal peptide, protects hippocampal neurons against excitotoxic injury. J Neurochem 2007;102:1905-17.
  25. Kleinz MJ, Baxter GF. Apelin reduces myocardial reperfusion injury independently of PI3K/Akt and P70S6 kinase. Regul Pept 2008;146:271-7.
  26. Zhuge J, Cederbaum AI. Serum deprivation-induced HepG2 cell death is potentiated by CYP2E1. Free Radic Biol Med 2006;40:63-74. https://doi.org/10.1016/j.freeradbiomed.2005.08.012
  27. Zeng XJ, Yu SP, Zhang L, Wei L. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res 2010;316:1773-83. https://doi.org/10.1016/j.yexcr.2010.02.005
  28. Barcia C, Ros CM, Annese V, Gomez A, Ros-Bernal F, AguadoYera D, Martinez-Pagan ME, de Pablos V, Fernandez-Villalba E, Herrero MT. IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. Cell Death Dis 2011;2:e142.
  29. Bayat AH, Azimi H, Hassani Moghaddam M, Ebrahimi V, Fathi M, Vakili K, Mahmoudiasl GR, Forouzesh M, Boroujeni ME, Nariman Z, Abbaszadeh HA, Aryan A, Aliaghaei A, Abdollahifar MA. COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus. Apoptosis 2022;27:852-68. https://doi.org/10.1007/s10495-022-01754-9
  30. Malyszko J, Malyszko JS, Pawlak K, Wolczynski S, Mysliwiec M. Apelin, a novel adipocytokine, in relation to endothelial function and inflammation in kidney allograft recipients. Transplant Proc 2008;40:3466-9. https://doi.org/10.1016/j.transproceed.2008.06.059
  31. Yu S, Zhang Y, Li MZ, Xu H, Wang Q, Song J, Lin P, Zhang L, Liu Q, Huang QX, Wang K, Hou WK. Chemerin and apelin are positively correlated with inflammation in obese type 2 diabetic patients. Chin Med J (Engl) 2012;125:3440-4.
  32. Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A, Madjd Z. Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosci 2012;48:201-8. https://doi.org/10.1007/s12031-012-9808-3
  33. Wang W, McKinnie SM, Patel VB, Haddad G, Wang Z, Zhabyeyev P, Das SK, Basu R, McLean B, Kandalam V, Penninger JM, Kassiri Z, Vederas JC, Murray AG, Oudit GY. Loss of Apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc 2013;2:e000249.
  34. Tiani C, Garcia-Pras E, Mejias M, de Gottardi A, Berzigotti A, Bosch J, Fernandez M. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol 2009;50:296-305. https://doi.org/10.1016/j.jhep.2008.09.019
  35. Yoshiya S, Shirabe K, Imai D, Toshima T, Yamashita Y, Ikegami T, Okano S, Yoshizumi T, Kawanaka H, Maehara Y. Blockade of the apelin-APJ system promotes mouse liver regeneration by activating Kupffer cells after partial hepatectomy. J Gastroenterol 2015;50:573-82. https://doi.org/10.1007/s00535-014-0992-5
  36. Chen D, Lee J, Gu X, Wei L, Yu SP. Intranasal delivery of apelin-13 is neuroprotective and promotes angiogenesis after ischemic stroke in mice. ASN Neuro 2015;7:1759091415605114.
  37. Xin Q, Cheng B, Pan Y, Liu H, Yang C, Chen J, Bai B. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides 2015;63:55-62. https://doi.org/10.1016/j.peptides.2014.09.016
  38. O'Carroll AM, Lolait SJ, Harris LE, Pope GR. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol 2013;219:R13-35. https://doi.org/10.1530/JOE-13-0227
  39. Qiu Y, Cao Y, Cao W, Jia Y, Lu N. The application of ferroptosis in diseases. Pharmacol Res 2020;159:104919.
  40. Zhang Z, Tang J, Song J, Xie M, Liu Y, Dong Z, Liu X, Li X, Zhang M, Chen Y, Shi H, Zhong J. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic Biol Med 2022;181:130-42. https://doi.org/10.1016/j.freeradbiomed.2022.01.020
  41. Tang M, Huang Z, Luo X, Liu M, Wang L, Qi Z, Huang S, Zhong J, Chen JX, Li L, Wu D, Chen L. Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radic Biol Med 2019;134:445-57. https://doi.org/10.1016/j.freeradbiomed.2019.01.052
  42. Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023;50:1639-53.
  43. Ellrichmann G, Reick C, Saft C, Linker RA. The role of the immune system in Huntington's disease. Clin Dev Immunol 2013;2013:541259.
  44. Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington's disease. Hum Mol Genet 2013;22:1826-42. https://doi.org/10.1093/hmg/ddt036
  45. Hsiao HY, Chiu FL, Chen CM, Wu YR, Chen HM, Chen YC, Kuo HC, Chern Y. Inhibition of soluble tumor necrosis factor is therapeutic in Huntington's disease. Hum Mol Genet 2014;23:4328-44. https://doi.org/10.1093/hmg/ddu151
  46. Pozniak PD, White MK, Khalili K. TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 2014;9:133-41.
  47. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH. Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 2004;24:7999-8008. https://doi.org/10.1523/JNEUROSCI.2675-04.2004
  48. Ishimaru Y, Sumino A, Kajioka D, Shibagaki F, Yamamuro A, Yoshioka Y, Maeda S. Apelin protects against NMDA-induced retinal neuronal death via an APJ receptor by activating Akt and ERK1/2, and suppressing TNF-α expression in mice. J Pharmacol Sci 2017;133:34-41. https://doi.org/10.1016/j.jphs.2016.12.002
  49. Zhang H, Chen S, Zeng M, Lin D, Wang Y, Wen X, Xu C, Yang L, Fan X, Gong Y, Zhang H, Kong X. Apelin-13 administration protects against LPS-induced acute lung injury by inhibiting NF-κB pathway and NLRP3 inflammasome activation. Cell Physiol Biochem 2018;49:1918-32.