DOI QR코드

DOI QR Code

Conceptual RF design of 750 MHz IH cavities for 𝛽 = 0.10-0.15 ion beams in medical accelerators

  • Received : 2023.10.09
  • Accepted : 2024.04.02
  • Published : 2024.09.25

Abstract

In light of the potential interest of Interdigital H-mode (IH) cavities for accelerating carbon ion beams beyond 5 MeV/u, we are reviewing the key geometric elements of the regular cells and end cells to optimize performance in terms of power efficiency, achievable voltage, and dipole field correction.

Keywords

Acknowledgement

The authors would like to thank the financial support for this work by local Basque government through the IKERTU-II project, ZE-2021/00050.

References

  1. M. Vretenar, J. Vollaire, R. Scrivens, C. Rossi, F. Roncarolo, S. Ramberger, U. Raich, B. Puccio, D. Nisbet, R. Mompo, S. Mathot, C. Martin, L.A. Lopez-Hernandez, A. Lombardi, J. Lettry, J.B. Lallement, I. Kozsar, J. Hansen, F. Gerigk, A. Funken, J.F. Fuchs, N. Dos Santos, M. Calviani, M. Buzio, O. Brunner, Y. Body, P. Baudrenghien, J. Bauche, T. Zickler, Linac4 Design Report, CERN, Geneva, 2020, https://doi.org/10.23731/CYRM-2020-006.
  2. D. Ungaro, A. Degiovanni, P. Stabile, LIGHT: a linear accelerator for proton therapy, in: JACOW, Geneva, Switzerland, 2017, pp. 1282-1286, https://doi.org/10.18429/JACoW-NAPAC2016-FRB1IO02.
  3. W. Pelzer, Operation of the RFQ-injector at the ISL cyclotron, Nukleonika 48 (Supplement 2) (2003) S25-S28. http://web.ichtj.waw.pl/www/back/full/vol48_2003/v48s2p025f.pdf.
  4. U. Ratzinger, H-type linac structures. https://doi.org/10.5170/CERN-2005-003.351, 2005.
  5. S.S. Kurennoy, L.J. Rybarcyk, J.F. O'Hara, E.R. Olivas, T.P. Wangler, H -mode accelerating structures with permanent-magnet quadrupole beam focusing, Phys. Rev. Spec. Top. Accel. Beams 15 (2012) 090101, https://doi.org/10.1103/PhysRevSTAB.15.090101.
  6. S. Benedetti, High-gradient and High-Efficiency Linear Accelerators for Hadron Therapy, EPFL, 2018, https://doi.org/10.5075/epfl-thesis-8246.
  7. A.V. Butenko, E.D. Donets, E.E. Donets, V.V. Fimushkin, A. Govorov, A. D. Kovalenko, K.A. Levterov, I.N. Meshkov, V. Monchinsky, A.Y. Ramsdorf, A. O. Sidorin, G.V. Trubnikov, Development of the NICA Injection Facility, JACoW Publishing, Geneva, Switzerland, Shanghai, China, 2013, pp. 3915-3917. https://jacow.org/IPAC2013/papers/THPWO069.pdf.
  8. U. Ratzinger, Commissioning of the new GSI high current linac and HIF related RF linac aspects, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 464 (2001) 636-645, https://doi.org/10.1016/S0168-9002(01)00155-3.
  9. H. Hahnel, U. Ratzinger, R. Tiede, The KONUS IH-DTL proposal for the GSI UNILAC poststripper linac replacement, J. Phys. Conf. Ser. 874 (2017) 012047, https://doi.org/10.1088/1742-6596/874/1/012047.
  10. J.H. Hahnel, Development of an IH-type linac for the acceleration of high current heavy ion beams, Johann Wolfgang Goethe-Universitat in Frankfurt am Main (2017). https://ubffm.hds.hebis.de/Record/HEB415235022.
  11. U. Ratzinger, H. Hahnel, R. Tiede, J. Kaiser, A. Almomani, Combined zero degree structure beam dynamics and applications, Phys. Rev. Accel. Beams 22 (2019) 114801, https://doi.org/10.1103/PhysRevAccelBeams.22.114801.
  12. L. Lu, T. Hattori, N. Hayashizaki, CW operation on APF-IH linac as a heavy ion implanter, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 622 (2010) 485-491, https://doi.org/10.1016/j.nima.2010.07.043.
  13. L. Zhao, J. Pang, X. He, Z. Ying, J. Shi, Design of an alternating phase focusing Interdigital H-mode Drift-Tube-Linac with low injection energy, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 806 (2016) 75-79, https://doi.org/10.1016/j.nima.2015.10.007.
  14. Y. Iwata, S. Yamada, T. Murakami, T. Fujimoto, T. Fujisawa, H. Ogawa, N. Miyahara, K. Yamamoto, S. Hojo, Y. Sakamoto, M. Muramatsu, T. Takeuchi, T. Mitsumoto, H. Tsutsui, T. Watanabe, T. Ueda, Alternating-phase-focused IH-DTL for an injector of heavy-ion medical accelerators, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 569 (2006) 685-696, https://doi.org/10.1016/j.nima.2006.09.057.
  15. K. Yamamoto, H. Tanaka, H. Harada, K. Sugahara, H. Inoue, S. Kawasaki, T. Nagayama, S. Ueda, Experimental verification of an APF linac for a proton therapy facility, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269 (2011) 2875-2878, https://doi.org/10.1016/j.nimb.2011.04.046.
  16. Y. Lu, Development of an IH-DTL injector for the Heidelberg cancer therapy project, Universitatsbibliothek Johann Christian Senckenberg (2005). http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/4063.
  17. Y. Lei, X. Guan, C. Tang, R. Tang, X. Wang, Q. Xing, S. Zheng, RF and primary beam dynamics design of a 325 MHz IH-DTL, in: JACOW, Geneva, Switzerland, 2017, pp. 2332-2335, https://doi.org/10.18429/JACoW-IPAC2017-TUPVA104.
  18. P.F. Ma, R. Tang, Y. Yang, S.X. Zheng, W.B. Ye, M.W. Wang, W.L. Liu, B.C. Wang, Q.Z. Xing, C.T. Du, H.Y. Zhang, J. Li, X.L. Guan, X.W. Wang, Z.M. Wang, M.T. Qiu, Development of a compact 325 MHz proton interdigital H -mode drift tube linac with high shunt impedance, Phys. Rev. Accel. Beams 24 (2021) 020101, https://doi.org/10.1103/PhysRevAccelBeams.24.020101.
  19. R. Mertzig, M. Breitenfeldt, S. Mathot, J. Pitters, A. Shornikov, F. Wenander, A high-compression electron gun for C6+ production: concept, simulations and mechanical design, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 859 (2017) 102-111, https://doi.org/10.1016/j.nima.2016.12.036.
  20. V. Bencini, H.W. Pommerenke, A. Grudiev, A.M. Lombardi, 750 MHz radio frequency quadrupole with trapezoidal vanes for carbon ion therapy, Phys. Rev. Accel. Beams 23 (2020) 122003, https://doi.org/10.1103/PhysRevAccelBeams.23.122003.
  21. M. Koopmans, D. Gavela, F. Di Lorenzo, A. Lombardi, C. Oliver, E. Pasino, G. Moreno, J. Giner Navarro, J. Perez Morales, P. Calvo, S. Mathot, Preparations for beam commissioning of the carbon RFQ at CERN, in: Proc IPAC23, JACoW Publishing, Geneva, Switzerland, Venice, Italy, 2023, pp. 4961-4964, https://doi.org/10.18429/jacow-ipac2023-thpm057.
  22. C. Ronsivalle, L. Picardi, A. Ampollini, G. Bazzano, F. Marracino, P. Nenzi, C. Snels, V. Surrenti, M. Vadrucci, F. Ambrosini, First acceleration of a proton beam in a side coupled drift tube linac, Europhys. Lett. 111 (2015) 14002, https://doi.org/10.1209/0295-5075/111/14002.
  23. Dassault Systemes, CST Studio suite. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/, 2022.
  24. G. Moreno, J. Giner Navarro, D. Gavela, P. Calvo, M. Leon Lopez, C. Oliver, J. Perez Morales, A. Rodriguez Paramo, J. Carmona, M. Alvarado Martin, A. Lombardi, Thermal and deformation analysis of a 750 MHz IH-DTL prototype for medical applications, in: Proc IPAC23, JACoW Publishing, Geneva, Switzerland, 2023, pp. 1677-1680, https://doi.org/10.18429/jacow-ipac2023-tupa170.
  25. G. Moreno, M.C. Battaglia, P. Calvo, J.M. Carmona, D. Gavela, J. Giner Navarro, A. Lombardi, R. Lopez Lopez, C. Oliver, J. Perez Morales, Effect of high-magnetic field region geometry on the efficiency of a 750 MHz IH structure, in: JACOW Publishing, Geneva, Switzerland, 2022, pp. 150-153, https://doi.org/10.18429/JACoW-LINAC2022-MOPOGE05.
  26. T.P. Wangler, RF Linear Accelerators, John Wiley & Sons, Ltd, 2008, https://doi.org/10.1002/9783527623426.
  27. W.D. Kilpatrick, Criterion for vacuum sparking designed to include both rf and dc, Rev. Sci. Instrum. 28 (1957) 824-826, https://doi.org/10.1063/1.1715731.
  28. G. Moreno, J. Giner Navarro, D. Gavela, P. Calvo, M. Leon Lopez, C. Oliver, J. Perez Morales, A. Rodriguez Paramo, J. Carmona, M. Alvarado Martin, A. Lombardi, H11 (0) end cells for a 750 MHz IH structure, in: Proc IPAC23, JACoW Publishing, Geneva, Switzerland, 2023, pp. 1681-1684, https://doi.org/10.18429/jacowipac2023-tupa171.
  29. U. Amaldi, A. Citterio, M. Crescenti, A. Giuliacci, C. Tronci, R. Zennaro, CLUSTER: a high-frequency H-mode coupled cavity linac for low and medium energies, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 579 (2007) 924-936, https://doi.org/10.1016/j.nima.2007.05.208.