DOI QR코드

DOI QR Code

The radioactivity levels and beta dose rate assessment from dental ceramic materials in Egypt

  • Mohamed Hasabelnaby (Radiology and Medical Imaging Technology Department, School of Technology of Applied Health Sciences, Badr University) ;
  • Mohamed Y. Hanfi (Nuclear Materials Authority) ;
  • Hany El-Gamal (Technology of Radiology and Medical Imaging Department, Faculty of Applied Health Sciences Technology, Menoufia University) ;
  • Ahmed H. El Gindy (Biomaterials Department, School of Dentistry, Badr University) ;
  • Mayeen Uddin Khandakerf (Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University) ;
  • Ghada Salaheldin (Physics Department, Faculty of Science, Assiut University)
  • 투고 : 2024.03.05
  • 심사 : 2024.04.24
  • 발행 : 2024.09.25

초록

There is a lack of available data on the radioactivity levels of these materials, despite the potential risks they may pose to patients, dental technicians, and dentists. A total of forty samples were collected from different dental markets in Egypt. Using an NaI(Tl) detector, the gamma-ray spectrometer measured the activity levels of uranium-238, radium-226, thorium-232, and potassium-40. The findings revealed that the mean concentration of 238U (below the minimum detectable activity, MDA), 226Ra (135 ± 5 and 132 ± 5 Bq/kg), 232Th (187 ± 4 and 243 ± 8 Bq/kg), and 40K (1560 ± 52 and 2501 ± 89 Bq/kg) in feldspar and zirconia (ZrO2) dental ceramic samples, respectively, were all within the limits established by the International Organization for Standardization (ISO) and the European Commission (EC). The use of feldspar and zirconia dental ceramics to restore all teeth would result in an estimated maximum beta dose of 1.5 mGy/year to the oral tissue. The results suggest that there is no cause for concern regarding any additional beta dose to the oral cavity from the use of feldspar and zirconia dental ceramics.

키워드

참고문헌

  1. UNSCEAR, Sources and Effects of Ionizing Radiation - Exposures of the Public and Workers from Various Sources of Radiation, UNSCEAR 2008, New York, 2010. Report, http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf.
  2. S. Sivakumar, A. Chandrasekaran, G. Senthilkumar, M. Suresh Gandhi, R. Ravisankar, Determination of radioactivity levels and associated hazards of coastal sediment from south east coast of Tamil Nadu with statistical approach, Iran J Sci Technol Trans A Sci 42 (2018) 601-614, https://doi.org/10.1007/s40995-017-0184-2.
  3. A. Abbasi, Radiation risk assessment of coastal biota from a quasi-Fukushima hypothetical accident in the Mediterranean Sea, Mar. Pollut. Bull. 194 (2023) 115363, https://doi.org/10.1016/j.marpolbul.2023.115363.
  4. M.A. Akpanowo, I. Umaru, S. Iyakwari, E.O. Joshua, S. Yusuf, G.B. Ekong, Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria, Sci Afr 10 (2020) e00561, https://doi.org/10.1016/j.sciaf.2020.e00561.
  5. E. Sairenji, K. Moriwaki, M. Shimizu, K. Noguchi, I. Anzai, N. Ikeda, Determination of uranium content in dental porcelains by means of the fission track method and estimation of radiation dose to oral mucosa by radioactive elements, Health Phys. 38 (1980) 483-492.
  6. R. Durkan, A. Gurbuz, S. Murat, H. Yucel, Measurement of activity concentrations of 238U, 226Ra, 232Th and 40K in different dental ceramic materials and assessment of dose given to oral mucosa, Radiat. Phys. Chem. 168 (2020), https://doi.org/10.1016/j.radphyschem.2019.108598.
  7. R.L., P.J.M. Sakaguchi, Craig's Restorative Dental Materials, Elsevier, 2012, https://doi.org/10.1016/C2010-0-65754-3.
  8. G. Schamlz, D. Arenholt, Biocompatibility of Dental Materials, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, https://doi.org/10.1007/978-3-540-77782-3.
  9. P.J.H. Scott, B.G. Hockley, H.F. Kung, R. Manchanda, W. Zhang, M.R. Kilbourn, Studies into radiolytic decomposition of fluorine-18 labeled radiopharmaceuticals for positron emission tomography, Appl. Radiat. Isot. 67 (2009) 88-94, https://doi.org/10.1016/j.apradiso.2008.08.015.
  10. J. Porstendorfer, A. Reineking, H.-G. Willert, Radiation risk estimation based on activity measurements of zirconium oxide implants, J. Biomed. Mater. Res. 32 (1996) 663-667, https://doi.org/10.1002/(SICI)1097-4636(199612)32:4<663::AID-JBM20>3.0.CO;2-D.
  11. C., V.S., G.P. Papastefanou, Uranium in dental porcelain powders and dose induced in oral mucosa, Radiat. Protect. Dosim. (1987), https://doi.org/10.1093/oxfordjournals.rpd.a079919.
  12. Z. Khurshid, M.S. Zafar, S. Najeeb, T. Nejatian, F. Sefat, Introduction to dental biomaterials and their advances, in: Advanced Dental Biomaterials, Elsevier, 2019, pp. 1-5, https://doi.org/10.1016/B978-0-08-102476-8.00001-3.
  13. J.Z. Shen, T. Kosmac, Advanced Ceramics for Dentistry, Elsevier, 2014, https://doi.org/10.1016/C2011-0-07169-7.
  14. O. El-Mowafy, N. El-Aawar, N. El-Mowafy, Porcelain veneers: an update, Dent Med Probl 55 (2018) 207-211, https://doi.org/10.17219/dmp/90729.
  15. X. Liang, Y. Qiu, S. Zhou, X. Hu, G. Yu, X. Deng, Preparation and properties of dental zirconia ceramics, journal of university of science and technology Beijing, mineral, metallurgy, Materials 15 (2008) 764-768, https://doi.org/10.1016/S1005-8850(08)60284-4.
  16. W.J. O'Brien, Uranium in dental porcelain powders and dose induced in oral mucosa, Radiat. Protect. Dosim. (1987), https://doi.org/10.1093/oxfordjournals. rpd.a079919.
  17. E. Eren Belgin, G.A. Aycik, Potassium compounds for gamma spectrometer efficiency verification, Appl. Radiat. Isot. 125 (2017) 30-33, https://doi.org/10.1016/j.apradiso.2017.04.004.
  18. I. Veronese, G. Guzzi, A. Giussani, M.C. Cantone, D. Ripamonti, Determination of dose rates from natural radionuclides in dental materials, J. Environ. Radioact. 91 (2006) 15-26, https://doi.org/10.1016/j.jenvrad.2006.08.002.
  19. M.E. Kurkcuoglu, F. Tozun, I. Kurkcuoglu, S.H. Tuna, G.B. Cengiz, E.E. Belgin, Determination of radioactivity levels in feldspathic dental ceramics, Appl. Radiat. Isot. 179 (2022), https://doi.org/10.1016/j.apradiso.2021.109989.
  20. K. Asaduzzaman, F. Mannan, M.U. Khandaker, Assessment of Natural Radioactivity Levels and Potential Radiological Risks of Common Building Materials Used in Bangladeshi Dwellings, 2015, pp. 1-16, https://doi.org/10.1371/journal.pone.0140667.
  21. H. El-Gamal, H. Negm, M. Hasabelnaby, Detection efficiency of NaI(Tl) detector based on the fabricated calibration of HPGe detector, J Radiat Res Appl Sci 12 (2019) 360-366, https://doi.org/10.1080/16878507.2019.1672313.
  22. Y. Zhang, J.A. Griggs, A.W. Benham, Influence of powder/liquid mixing ratio on porosity and translucency of dental porcelains, J. Prosthet. Dent 91 (2004) 128-135, https://doi.org/10.1016/j.prosdent.2003.10.014.
  23. R. Durkan, A. Gurbuz, S. Murat, H. Yucel, Measurement of activity concentrations of 238U, 226Ra, 232Th and 40K in different dental ceramic materials and assessment of dose given to oral mucosa, Radiat. Phys. Chem. 168 (2020) 108598, https://doi.org/10.1016/j.radphyschem.2019.108598.
  24. Iso 6872, International Organization for Standardization, Dentistry-Ceramic Materials, 2015.
  25. European Commission (EC), Laying Down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, Council Directive, Brussels, 2012.
  26. P.O. Phil-eze, Variability of soil properties related to vegetation cover in a tropical rainforest variability of soil properties related to vegetation cover, in: A Tropical Rainforest Landscape, 2010.
  27. Z. Karim, B.A. Qureshi, Human and Ecological Risk Assessment : an Health Risk Assessment of Heavy Metals in Urban Soil of, 2013, pp. 37-41, https://doi.org/10.1080/10807039.2013.791535.
  28. H. Yongming, D. Peixuan, C. Junji, E.S. Posmentier, Multivariate analysis of heavy metal contamination in urban dusts of Xi ' an, Central China 355 (2006) 176-186, https://doi.org/10.1016/j.scitotenv.2005.02.026.
  29. M.E. Kurkcuoglu, F. Tozun, I. Kurkcuoglu, S.H. Tuna, G.B. Cengiz, E.E. Belgin, Determination of radioactivity levels in feldspathic dental ceramics, Appl. Radiat. Isot. 179 (2022) 109989, https://doi.org/10.1016/j.apradiso.2021.109989.
  30. I. Veronese, G. Guzzi, A. Giussani, M.C. Cantone, D. Ripamonti, Determination of dose rates from natural radionuclides in dental materials, J. Environ. Radioact. 91 (2006) 15-26, https://doi.org/10.1016/j.jenvrad.2006.08.002.
  31. P.A.P.C.F.M. Volpato C, Ceramic Materials and Colorin Dentistry, INTECH Open, 2010.
  32. M. Awad, A.M. El Mezayen, A. El Azab, S.M. Alfi, H.H. Ali, M.Y. Hanfi, Radioactive risk assessment of beach sand along the coastline of Mediterranean Sea at El-Arish area, North Sinai, Egypt, Mar Pollut Bull 177 (2022) 113494. https://doi.org/10.1016/j.marpolbul.2022.113494.
  33. M.Y. Hanfi, V. Yarmoshenko, A.A. Seleznev, G. Malinovsky, E. Ilgasheva, M. V Zhukovsky, Beta radioactivity of urban surface-deposited sediment in three Russian cities, Environmental Science and Pollution Research 27 (2020) 40309-40315. https://doi.org/10.1007/s11356-020-10084-9.