DOI QR코드

DOI QR Code

Pebble flow in the HTR-PM reactor core by GPU-DEM simulation: Effect of friction

  • Zuoyi Zhang (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Quan Zou (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Nan Gui (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Bing Xia (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Zhiyong Liu (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University) ;
  • Xingtuan Yang (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University)
  • Received : 2024.01.09
  • Accepted : 2024.04.20
  • Published : 2024.09.25

Abstract

The high-temperature gas-cooled reactor (HTGR) with spherical fuel elements contains complex pebble flow. The flow behavior of pebbles is influenced by various factors, such as pebble density, friction coefficient, wall structure, and discharge port size. Using a GPU-DEM numerical model, the effects of the friction coefficient on the cyclic loading and unloading of pebbles in the full-scale HTR-PM are studied. Numerical simulations with up to 420,000 spherical pebbles are conducted. Four sets of friction coefficient values are determined for comparative analysis based on experimental measurements. Discharging speed, residence time, stress, porosity, and velocity distribution are quantitatively analyzed. In addition, a comparison with the CT-PFD experiment is carried out to validate the numerical model. The results show that near-wall retention phenomena are observed in the reactor core only when using large friction coefficients. However, using friction coefficient values closer to the measured experimental values, the pebble bed in HTR-PM exhibited good flow characteristics. Furthermore, the friction coefficient also influences the porosity and velocity distribution of the pebble bed, with lower friction coefficients resulting in lower overall stress in the bed. The discharge outlet's influence varies with different friction coefficient values. In summary, this study demonstrates that the value of the friction coefficient has a complex influence on the pebble flow in HTR-PM, which provides important insights for future numerical and experimental studies in this field.

Keywords

Acknowledgement

The authors are grateful for the support of this research by the National Science and Technology Major Project of China (Grant No. 2011ZX06901-003).

References

  1. S. Golshan, R. Sotudeh-Gharebagh, R. Zarghami, N. Mostoufi, B. Blais, Review and implementation of CFD-DEM applied to chemical process systems, Chem. Eng. Sci. 221 (2020) 115646, https://doi.org/10.1016/j.ces.2020.115646. 
  2. S. Utili, T. Zhao, G.T. Houlsby, 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power, Eng. Geol. 186 (2015) 3-16, https://doi.org/10.1016/j.enggeo.2014.08.018. 
  3. S.B. Yeom, E.S. Ha, M.S. Kim, S.H. Jeong, S.J. Hwang, Application of the discrete element method for manufacturing process simulation in the pharmaceutical industry [Journal Article; Review], Pharmaceutics 11 (8) (2019), https://doi.org/10.3390/pharmaceutics11080414. 
  4. M. Lei, S. Liu, Q. Wu, S. Xu, B. Li, Research on purge gas flow characteristics in different pebble bed structures for fusion blanket, Prog. Nucl. Energy 155 (2023) 104488, https://doi.org/10.1016/j.pnucene.2022.104488. 
  5. H. Wu, N. Gui, X. Yang, J. Tu, S. Jiang, Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation, Int. J. Heat Mass Tran. 110 (2017) 393-405, https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.035. 
  6. W. Xi, Q. Wu, M. Lei, J. Wang, Z. Liu, Numerically investigation of the neutron irradiation swelling on the mechanical and structural evolution of beryllium pebble bed, Fusion Eng. Des. 195 (2023) 113966, https://doi.org/10.1016/j.fusengdes.2023.113966. 
  7. S. Jiang, J. Tu, X. Yang, N. Gui, Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core, Springer Singapore Pte. Limited, 2020, https://doi.org/10.1007/978-981-15-9565-3. 
  8. Z. Zhang, Z. Wu, D. Wang, Y. Xu, Y. Sun, Current status and technical description of Chinese 2×250MWth HTR-PM demonstration plant, Nucl. Eng. Des. 239 (7) (2009) 1212-1219, https://doi.org/10.1016/j.nucengdes.2009.02.023. 
  9. Q. Zou, N. Gui, X. Yang, J. Tu, S. Jiang, Numerical study of the effects of loading method on mixing of two kinds of pebbles in HTGR: a GPU-DEM simulation, Prog. Nucl. Energy 165 (2023) 104905, https://doi.org/10.1016/j.pnucene.2023.104905. 
  10. B. Li, N. Gui, H. Wu, X. Yang, J. Tu, Effects of the 3-D wall structures on the flow and mixing characteristics of pebbles in pebble beds in HTR-10, Ann. Nucl. Energy 164 (2021) 108607, https://doi.org/10.1016/j.anucene.2021.108607. 
  11. M. Wu, N. Gui, X. Liu, X. Yang, J. Tu, Numerical analysis of the effects of different outlet sizes on pebble flows in HTR-10 pebble beds, Nucl. Eng. Des. 387 (2022) 111620, https://doi.org/10.1016/j.nucengdes.2021.111620. 
  12. M. Wu, N. Gui, H. Wu, X. Yang, J. Tu, Numerical study of mixing pebble flow with different density in circulating packed bed, Ann. Nucl. Energy 130 (2019) 483-492, https://doi.org/10.1016/j.anucene.2019.03.020. 
  13. F.P. Bowden, J.E. Young, Friction of diamond, graphite, and carbon and the influence of surface films, Proc. Roy. Soc. Lond. Math. Phys. Sci. 208 (1095) (1951) 444-455, https://doi.org/10.1098/rspa.1951.0173. 
  14. O.M. Stansfield, Friction and wear of graphite in dry helium at 25, 400, and 800◦C, Nucl. Appl. 6 (4) (1969) 313-320, https://doi.org/10.13182/NT69-A28339. 
  15. E. Csapo, H. Zaidi, D. Paulmier, Friction behaviour of a graphite-graphite dynamic electric contact in the presence of argon, Wear 192 (1) (1996) 151-156, https://doi.org/10.1016/0043-1648(95)06788-4. 
  16. Y. Iwasa, A.F. Ashaboglu, E.R. Rabinowicz, T. Tachibana, K. Kobashi, Cryotribology of diamond and graphite, Cryogenics 37 (12) (1997) 801-805, https://doi.org/10.1016/S0011-2275(97)00073-8. 
  17. X. Luo, X. Li, S. Yu, Nuclear graphite friction properties and the influence of friction properties on the pebble bed, Nucl. Eng. Des. 240 (10) (2010) 2674-2681, https://doi.org/10.1016/j.nucengdes.2010.07.030. 
  18. L. Xiaowei, Y. Suyuan, S. Xuanyu, H. Shuyan, The influence of roughness on tribological properties of nuclear grade graphite, J. Nucl. Mater. 350 (1) (2006) 74-82, https://doi.org/10.1016/j.jnucmat.2005.11.013. 
  19. J. Xiao, L. Zhang, K. Zhou, J. Li, X. Xie, Anisotropic friction behaviour of highly oriented pyrolytic graphite, Carbon 65 (2013) 53-62, https://doi.org/10.1016/j.carbon.2013.07.101. 
  20. B. Liu, H. Zhao, X. Li, Z. Yang, D. Zhang, Effect of pore structure on the thermophysical and frictional properties of high-density graphite, Microporous Mesoporous Mater. 330 (2022) 111613, https://doi.org/10.1016/j.micromeso.2021.111613. 
  21. L. Vergari, J. Quincey, G. Meric De Bellefon, T. Merriman, M. Hackett, Self-lubrication of nuclear graphite in argon at high temperature, Tribol. Int. 177 (2023) 107946, https://doi.org/10.1016/j.triboint.2022.107946. 
  22. P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1) (1979). 
  23. H. Suikkanen, J. Ritvanen, P. Jalali, R. Kyrki-Rajamaki, Discrete element modelling of pebble packing in pebble bed reactors, Nucl. Eng. Des. 273 (2014) 24-32, https://doi.org/10.1016/j.nucengdes.2014.02.022. 
  24. C. Xie, H. Ma, Y. Zhao, Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction, Eng. Anal. Bound. Elem. 105 (2019) 207-220, https://doi.org/10.1016/j.enganabound.2019.04.013. 
  25. J. Wang, M. Lei, H. Yang, K. Xu, S. Xu, Effects of coefficient of friction and coefficient of restitution on static packing characteristics of polydisperse spherical pebble bed, Particuology 57 (2021) 1-9, https://doi.org/10.1016/j.partic.2020.12.013. 
  26. S. Wei, H. Wei, H. Saxen, Y. Yu, Numerical analysis of the relationship between friction coefficient and repose angle of blast furnace raw materials by discrete element method, Materials 15 (3) (2022) 903, https://doi.org/10.3390/ma15030903. 
  27. Y. Li, N. Gui, X. Yang, J. Tu, S. Jiang, Effect of friction on pebble flow pattern in pebble bed reactor, Ann. Nucl. Energy 94 (2016) 32-43, https://doi.org/10.1016/j.anucene.2016.02.022. 
  28. Q. Zou, N. Gui, X. Yang, J. Tu, S. Jiang, A GPU-based DEM model for the pebble flow study in packed bed: simulation scheme and validation, Powder Technol. 118441 (2023), https://doi.org/10.1016/j.powtec.2023.118441. 
  29. J. Horabik, M. Molenda, Parameters and contact models for DEM simulations of agricultural granular materials: a review, Biosyst. Eng. 147 (2016) 206-225, https://doi.org/10.1016/j.biosystemseng.2016.02.017. 
  30. M. Marigo, E.H. Stitt, Discrete element method (DEM) for industrial applications: comments on calibration and validation for the modelling of cylindrical pellets, Kona Powder and Particle Journal 32 (2015) 236-252, https://doi.org/10.14356/kona.2015016. 
  31. H. Wu, N. Gui, X. Yang, J. Tu, S. Jiang, Effects of particle size and region width on the mixing and dispersion of pebbles in two-region pebble bed, Granul. Matter 18 (4) (2016) 1, https://doi.org/10.1007/s10035-016-0672-7. 
  32. U. Ayachit, The ParaView guide: a parallel visualization application, In Retrieved from Retrieved from, https://api.semanticscholar.org/CorpusID:62297869, 2015. 
  33. X. Wan, X. Liu, J. Miao, P. Cong, Y. Zhang, Research on the computed tomography pebble flow detecting system for HTR-PM, Science and Technology of Nuclear Installations (2017) 1-13, https://doi.org/10.1155/2017/5403701, 2017. 
  34. G.E. Mueller, A simple method for determining sphere packed bed radial porosity, Powder Technol. 229 (2012) 90-96, https://doi.org/10.1016/j.powtec.2012.06.013. 
  35. C. Liu, Y. Gao, X. Dong, Y. Wang, J. Liu, Third generation of vortex identification methods: omega and Liutex/Rortex based systems, J. Hydrodyn. 31 (2) (2019) 205-223, https://doi.org/10.1007/s42241-019-0022-4. 
  36. Y. Robert, T. Siaraferas, M. Fratoni, Hyper-fidelity depletion with discrete motion for pebble bed reactors, Scientific Reports 13 (1) (2023) 12711. https://doi.org/10.1038/s41598-023-39186-3. 
  37. S. Schunert, J. Ortensi, Y. Wang, P. Balestra, M. Jaradat, O. Calvin, J. Hanophy, L. Harbour, An equilibrium core depletion algorithm for pebble-bed reactors in the Griffin code, Ann. Nucl. Energy 192 (2023) 109980. https://doi.org/10.1016/j.anucene.2023.109980. 
  38. R. Li, Z. Liu, Z. Feng, J. Liang, High-fidelity MC-DEM modeling and uncertainty analysis of HTR-PM first criticality, Front. Energy Res. 9 (2022) 822780. htt ps://doi.org/10.3389/fenrg.2021.822780. 
  39. V. Fanny, K. Jiri, K. Jarmo, P.H. Michael, P. Andreas. Statistical burnup distribution of moving pebbles in the high-temperature reactor HTR-PM. ASME J. Nuclear Rad. Sci. 6 (2) (2020) 021108. https://doi.org/10.1115/1.4044910. 
  40. D. She, J. Guo, Z. Liu, L. Shi, PANGU code for pebble-bed HTGR reactor physics and fuel cycle simulations, Annals of Nuclear Energy 126 (2019) 48-58. https://doi.org/10.1016/j.anucene.2018.11.005. 
  41. Y. Tang, L. Zhang, Q. Guo, B. Xia, Z. Yin, J. Cao, J. Tong, C.H. Rycroft, Analysis of the pebble burnup profile in a pebble-bed nuclear reactor, Nucl. Eng. Des. 345 (2019) 233-251. https://doi.org/10.1016/j.nucengdes.2019.01.030. 
  42. C. HAO, F. LI, Investigation on the pebble bed flow model in VSOP, Nucl. Eng. Des. 271 (2014) 352. 
  43. N. Gui, S.Y. Jiang, X.T. Yang, J.Y. Tu, A review of recent study on the characteristics and applications of pebble flows in nuclear engineering, Exp. Computat. Multiphase Flow 4 (2022) 339-349. https://doi.org/10.1007/s42757-022-0140-z. 
  44. D. She, F. Chen, B. Xia, L. Shi, Simulation of the HTR-10 operation history with the PANGU code, Front. Energy Res. 14 (9) (2021) 704116. https://doi.org/10.3389/fenrg.2021.704116.