DOI QR코드

DOI QR Code

SAE 1078 강의 파텐팅 온도 및 등온유지 시간에 따른 상변태 및 미세조직 변화

Effect of Patenting Temperature and Isothermal Time on the Phase Transformation and Microstructure Change in SAE 1078 Steel

  • 권기훈 (한국생산기술연구원 지능화뿌리기술연구소 주문형생산연구부문) ;
  • 박현준 (한국생산기술연구원 지능화뿌리기술연구소 주문형생산연구부문) ;
  • 여국현 (한국생산기술연구원 지능화뿌리기술연구소 주문형생산연구부문) ;
  • 이영국 (연세대학교 신소재공학과) ;
  • 김상권 (한국생산기술연구원 지능화뿌리기술연구소 주문형생산연구부문)
  • Gi-hoon Kwon (Customized Manufacturing R&D Department R&D, Korea Institute of Industrial Technology) ;
  • Hyunjun Park (Customized Manufacturing R&D Department R&D, Korea Institute of Industrial Technology) ;
  • Kuk-hyun Yeo (Customized Manufacturing R&D Department R&D, Korea Institute of Industrial Technology) ;
  • Young-Kook Lee (Department of Materials Science and Engineering, Yonsei University) ;
  • Sang-gweon Kim (Customized Manufacturing R&D Department R&D, Korea Institute of Industrial Technology)
  • 투고 : 2024.09.10
  • 심사 : 2024.09.24
  • 발행 : 2024.09.30

초록

To study the effects of patenting temperature and isothermal holding time on the phase transformation and mechanical property changes of SAE 1078 steel, the patenting process was performed at 460℃, 560℃, and 660℃ for isothermal times (30 s, 60 s, 90 s, 120 s, and 150 s) after nitrogen cooling under austenitizing conditions (1000℃, 2 min). In this study, a scanning electron microscope was used to measure the microstructure and interlamellar spacing of pearlite according to process variables, and an X-ray diffraction analyzer was used to calculate the phase fraction. Cooling rate is approximately 18.6℃/s from the austenitizing temperature to the patenting temperature and pearlite transformation begins at 597~602℃. As the patenting temperature increases, the rate of carbon diffusion during isothermal step increases, so a relatively coarse pearlite structure is formed, and the hardness tends to decrease overall. As the isothermal holding time increased, the hardness of the treated specimens converged to 420Hv, 376Hv, and 268Hv, respectively, because the phase transformation was sufficiently completed at 460℃, 560℃, and 660℃. On the other hand, as the isothermal holding time became shorter, sufficient phase transformation did not occur after the isothermal process, so retained austenite existed, resulting in a decrease in hardness.

키워드

과제정보

이 성과는 한국생산기술연구원 기관주요사업 "Add-on 모듈 탑재를 통한 지능형 뿌리공정 기술개발(KITECH EO-24-0005)" 연구과제로 수행되었습니다.

참고문헌

  1. F. Zhang, L. V. Bo, S. Liu, M. Wang, Y. Zheng, (2018). U.S. Patent No. 10,113,219. Washington, DC: U.S. Patent and Trademark Office.
  2. V. I. Izotov, V. A. Pozdnyakov, E. V. Luk'yanenko, O. Y. Usanova, G. A. Filippov: Phys. Met, 103 (2007) 519.
  3. K. Mishra and A. Singh: Mater. Sci. Eng. A, 706 (2017) 22.
  4. B. Bhattacharya and T. Bhattacharyya: A. Haldar: Mater. Trans. A, 51 (2020) 3614.
  5. F. P. K. Kavishe and T. J. Baker: Mater. Sci. Technol, 2 (1986) 816.
  6. S. Maya-Johnson, A. J. Ramirez, A. Toro: Eng. Fract. Mech, 138 (2015) 63.
  7. K. Mishra and V. N. Khiratkar: Int. J. Fatigue, 122 (2019) 84.
  8. S. D. Bakshi, A. Leiro, B. Prakash: Mater. Sci. Technol, 31 (2015) 1735.
  9. K. Mishra, A. Pachauri, A. Singh: Tribol. Lett, 66 (2018) 109.
  10. F. P. L. Kavishe and T. J. Baker: Mater. Sci. Technol, 2 (1986) 583.
  11. A. Inoue, T. Ogura, T. Masumoto: Metall. Trans. A, 8 (1977) 1689.
  12. J. Zhang, C. Meng, Y. Mu, P. Xu, Y. Liang: Mater. Res. Technol, 30 (2024) 5652.
  13. V. A. Lutsenko, E. V. Parusov, O. V. Parusov, O. V. Lutsenko: Mater. Sci, 58 (2023) 621.
  14. X. Su, M. Zhou, H. Wang, Q. Zhang, G. Xu: Mater. Charact, 202 (2023) 113013.
  15. R. Trivedi, R. Tandon, G. Mishra, R. Singh, J. K. Singh, G. S. Mahobia, S. Patra: Mater. Today Commun, 39 (2024) 109255.
  16. J. J. Lewandowski and A. W. Thompson: Metall. Trans. A, 17 (1986) 461.
  17. J. M. Hyzak and I. M. Bernstein: Metall. Trans. A, 7 (1976) 1217.
  18. H. J. Sim, H. L. Song, W. J. Nam: KSTP, 13 (2013) 415.
  19. J. M. Hyzak and I. M. Bernstein: Metall. Trans, 7 (1976) 1217.
  20. I. P. Kemp, G. Pollard, A. N. Bramley: Mater. Sci. Technol, 6 (1990) 331.
  21. B. E. Q'Donnelly, R. L. Reuben, T. N. Baker: Metals Tech, 11 (1984) 45.
  22. Y. S. Yang, J. G. Bae, C. G. Park: KSTP, 9 (2008) 454.
  23. Thermo-Calc TCW3 Software, 2005, Foundation of Computational Thermodynamics, Stockholm, Sweden.
  24. J. S. Kirkaldy and D. Venugopalan: Phase Transformations in Ferrous Alloys, eds, AIME, New York, NY, 1983, p. 128-48.
  25. K.W. Andrews: J. Iron Steel Inst, 203 (1965) 721.
  26. M. Dollar, I. M. Bernstein, A. W. Thompson: Acta Metall, 36 (1988) 311.
  27. K. K. Ray and D. Mondal: Acta Metall. Mater, 39 (1991) 2201.
  28. G. H. Kwon, H. Park, K. H. Yeo, Y. K. Lee, S. G. Kim: Special Issue of 28th IFHTSE Congress, 64 (2023) 29.
  29. G. H. Kwon, H. Park, K. H. Yeo, Y. K. Lee, S. G. Kim: KSHT, 36 (2023) 121.