DOI QR코드

DOI QR Code

Improving player performance and comfort in basketball with nanomaterials for improved padding and shock absorption

  • XU Xi-hong (Sport Department, Anhui University of Science and Technology) ;
  • S. Obaye (Graduate School of Intelligent Data Science, National Yunlin University of Science and Technology) ;
  • S. M. Abo-Dahab (Mathematics Department, Faculty of Science, South Valley University) ;
  • M. Saif AlDien (Department of Mathematics, Turabah University College, Taif University) ;
  • A. Yvaz (World-Class Research Center "Advanced Digital Technologies", State Marine Technical University)
  • Received : 2024.06.09
  • Accepted : 2024.09.04
  • Published : 2024.09.25

Abstract

The paper discusses the potential of nanomaterials in revolutionizing basketball equipment by applying them to advance padding and shock absorption technologies in order to bring more control and comfort to the players. Nanotechnology devised new solutions for the challenges that the players are exposed to by dealing with issues such as better control reducing shock to the hands and wrists during those most decisive periods of every game: dribbling, passing, and catching. This work embeds nanomaterials in basketballs to understand their efficacy in reducing the amount of force transmitted to players, thereby reducing the risk of injuries and fatigue. The research gives an in-depth look into the structural properties and performance benefits of nanomaterial-enhanced padding in balls for optimized comfort and control to players and improvement in the dynamics of gameplay. The future of nanotechnology in the design of basketball equipment finds further bases in an in-depth analysis and is experimentally validated with respect to the prospects of a ball that is safer, long-lasting, and with improved performance.

Keywords

Acknowledgement

This paper was supported by the Research on the Construction of the teaching mode of Integration of Inside and Outside Class of College Physical Education under the Background of Internet + (Project No.: 2021xjjy77), a key project of Education and Teaching Reform by Anhui University of Science and Technology; and Construction Model and development strategy of Curriculum Ideological and Political Ability of College Physical Education Teachers (project No. SKL2021202215), a project of Social Science Union of Anhui University of Science and Technology. The authors would like to acknowledge the Deanship of Graduate Studies and Scientific Research, Taif University for funding this work. The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-312 dated 20.04.2022)

References

  1. Allahyari, S.M.R., Shokravi, M. and Murmy, T.T. (2024), "Modeling of truncated nanocompositeconical shell structures for dynamic stability response", Struct. Eng. Mech., 91(3), 325-334. https://doi.org/10.12989/sem.2024.91.3.325.
  2. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: Buckling analysis", Wind Struct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431
  3. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct. 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285
  4. Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concr. Constr., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051
  5. Bespalova, E.I. (2007), "Reaction of an anisotropic cylindrical shell to a moving load", Int. J. Appl. Mech., 43, 425-431. https://doi.org/10.1007/s10778-007-0039-1
  6. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  7. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2018), "Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput., 18, 1053-106. https://doi.org/10.12989/cac.2016.18.6.1053.
  8. Bakhshandeh Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  9. Castro Jorge, P., Simoes, F.M.F. and Pinto da Costa, A. (2015), "Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads", Comput. Struct., 148, 24-34. https://doi.org/10.1016/j.compstruc.2014.11.002
  10. Gao, Y., Guo, W. and Baghaei, Sh. (2024), "Ceramic based nanocomposites with alumina-carbon nanotube reinforcement for improved energy absorption in sports-related injuries: Microstructural analysis and low velocity impact", Ceram. Int., 50, 11129-11137. https://doi.org/10.1016/j.ceramint.2024.01.014.
  11. Chen, J.S. and Tsai, S.M. (2023), "Sandwich structures with periodic assemblies on elastic foundation under moving loads", J. Vib. Control, 22, 2519-2529. https://doi.org/10.1177/1077546314548470
  12. Daikh, A.A., Drai, A., Houari, M.S.A., Eltaher, M.A.J.S. and Structures, C. (2023), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Adv. Nano Res., 36(6), 643-656. http://doi.org/10.12989/anr.2020.36.6.643.
  13. Ding, L., Zhu, H.P. and Wu, L. (2016), "Effects of axial load and structural damping on wave propagation in periodic Timoshenko beams on elastic foundations under moving loads", Phys. Lett. A, 380, 2335-2341. https://doi.org/10.1016/j.physleta.2016.05.023
  14. Farrokhian, A. (2023), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Adv. Nano Res., 35(1), 1-12. http://doi.org/10.12989/anr.2020.35.1.001.
  15. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  16. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213 . https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  17. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  18. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  19. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019b), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci. 153 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  20. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019c), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene platelet-reinforced piezo-electric layers", J. Sandw. Struct. Mat., 1099636219839175. https://doi.org/10.1177/1099636219839175.
  21. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  22. Huang, C.S., Tseng, Y.P. and Hung, C.L. (2000), "An accurate solution for the responses of circular curved beams subjected to a moving load", Int. J. Numer. Meth. Eng., 48, 1723-1740. https://doi.org/10.1002/1097-0207(20000830)48:12<1723::AID-NME965>3.0.CO;2-J
  23. Kang, J., Liu, G., Hu, Q., Huang, Y., Liu, L., Dong, L. and Guo, L. (2023), "Parallel nanosheet arrays for industrial oxygen production", J. Am. Chem. Soc., 145(46), 25143-25149. https://doi.org/10.1021/jacs.3c05688
  24. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-20. https://doi.org/10.12989/scs.2018.28.2.195.
  25. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820
  26. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nano-composite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010
  27. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concr. Constr., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  28. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  29. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct, 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  30. Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H., Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  31. Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S.L. (2007), "Moving load identification on a simply supported orthotropic plate", Int. J. Mech. Sci., 49, 1262-1275. https://doi.org/10.1016/j.ijmecsci.2007.03.005
  32. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concr., 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361
  33. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concr., 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745
  34. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118
  35. Panneton, R., Berry, A. and Laville, F. (1995), "Vibration and sound radiation of a cylindricalshell under a circumferentially moving load", J. Acoust. Soc. Am., 98, 2165-2173. https://doi.org/10.1121/1.413331
  36. Peng, Ch., Liu, H.C., Wu, M., Han, L. and Wang, Z. (2023), "A sensitive electrochemical sensor for detection of methyltestosterone as a doping agent in sports by CeO2/CNTs nanocomposite", Int. J. Elecrochem. Sci., 18, 25-30. https://doi.org/10.1016/j.ijoes.2023.01.014.
  37. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  38. Ruzzene, M. and Baz, A, (2023), "Dynamic stability of periodic shells with moving loads", J. Sound Vib., 296, 830-844. https://doi.org/10.1016/j.jsv.2006.03.008
  39. Sing, V.P., Dwivedi, J.P. and Upahyay, P.C. (2023), "Nonaxisymmetric dynamic response of buried orthotropic cylindrical shells under moving load", Struct. Eng. Mech., 8(1), 39-51. https://doi.org/10.12989/sem.1999.8.1.039
  40. Song, Q., Shi, J., Liu, Z. and Wan, Y. (2021), "Dynamic analysis of rectangular thin plates of arbitrary boundary conditions under moving loads", Int. J. Mech. Sci., 117, 16-29. https://doi.org/10.1016/j.ijmecsci.2016.08.005
  41. Sudheesh Kumar, C.P., Sujath, C. and Shankar, K. (2023), "Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon", Int. J. Mech. Sci., 99, 40-47.
  42. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  43. Wang, D., Zhang, W. and Zhu, J. (2024), "A moving bounds strategy for the parameterization of geometric design variables in the simultaneous shape optimization of curved shell structures and openings", Finite Elem. Anal. Des., 120, 80-89. https://doi.org/10.1016/j.finel.2016.07.002
  44. Wang, Y. and Wu, D. (2022), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronaut., 127, 17-181.
  45. Wu, M., Tian, W., He, J., Liu, F. and Yang, J. (2023). "Seismic isolation effect of rubber-sand mixture cushion under different site classes based on a simplified analysis model", Soil Dyn. Earthq. Eng., 166, 107738. https://doi.org/10.1016/j.soildyn.2022.107738
  46. Yang, L. (2023), "Challenges and recent progress in carbon-based nanocomposites for sportswear and sensing applications", Mat. Res. Exp., 10, 052001. https://doi.org/10.1088/2053-1591/accf64.
  47. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded beams reinforced with SiO2 nano-particles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  48. Zhu, X.Q. and Law, S.S. (2024), "Dynamic behavior of orthotropic rectangular plates under moving loads", J. Eng. Mech., 129, 79-87. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:1(7.