DOI QR코드

DOI QR Code

Dynamic analysis of nanostructure in improving sports equipment assuming sinusoidal shear deformation theory and numerical solution

  • Xinrui Yang (College of Physical Education and Health, East China Normal University) ;
  • Amir Behshad (Faculty of Technology and Mining, Yasouj University)
  • Received : 2024.04.17
  • Accepted : 2024.08.17
  • Published : 2024.09.25

Abstract

In this paper, dynamic response of annular nanoplates in improving sports equipment with surface effect embedded by visco Pasternak fractional foundation is studied. Size effects are evaluated by modified couple stress theory (MCST) and the surface effects are considered by the Gurtin-Murdoch theory. The structural damping effect is considered in this research using Kelvin-Voigt model. Sinusoidal shear deformation theory (SSDT) is applied for mathematical modelling of the nanostructure system. The numerical procedure of differential quadrature (DQ) is presented to determine the dynamic deflection as well as dynamic response of the annular nanoplates. The numerical results dynamic deflection of the nanostructure is considering, including material length scale parameter, spring and damper constants of visco-pasternak fractional foundation, geometrical parameters of annular nanoplates, surface stress effects.

Keywords

References

  1. Allahyari, S.M.R., Shokravi, M. and Murmy, T.T. (2024), "Modeling of truncated nanocompositeconical shell structures for dynamic stability response", Struct. Eng. Mech., 91(3), 325-334. https://doi.org/10.12989/sem.2024.91.3.325.
  2. Allehaibi, A.M. and Zenkour, A.M. (2022), "Magneto-thermoelastic response in an infinite medium with a spherical hole in the context of high order time-derivatives and triple-phase-lag model", Materials, 15(18), 6256. https://doi.org/10.3390/ma15186256.
  3. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind Struct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431
  4. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct. 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285
  5. Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concr. Constr., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051
  6. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  7. Bilouei, B.S., Kolahchi, R., and Bidgoli, M.R. (2018), "Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concr., 18(6), 1053-106. https://doi.org/10.12989/cac.2016.18.6.1053.
  8. Bakhshandeh Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  9. Baseri, V., Jafari, G.S., Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919, http://doi.org/10.12989/scs.2016.21.4.883.
  10. Bahrami, A. and Teimourian, A. (2017), "Small scale effect on vibration and wave power reflection in circular annular nanoplates", Compos. B. Eng., 109(15), 214-226. https://doi.org/10.1016/j.compositesb.2016.09.107
  11. Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A,. Merzouki, T., Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264. https://doi.org/10.1016/j.compstruct.2021.113712.
  12. Belarbi, M.O., Houari, M.S.A., Hirane, H., Daikh, A.A. and Bordas, S.P.A. (2022), "On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory", Compos. Struct., 279, 114715. https://doi.org/10.1016/j.compstruct.2021.114715
  13. Blanc, M. and Touratier, M. (2002), "An efficient and simple refined model for temperature analysis in thin laminated composites", Compos. Struct., 77, 193-205, https://doi.org/10.1016/j.compstruct.2005.07.001.
  14. Bouazza, M. and Zenkour, A.M. (2024), "Hygrothermal environmental effect on free vibration of laminated plates using nth-order shear deformation theory", Waves Random Complex Med., 15, 307-323. https://doi.org/10.1080/17455030.2021.1909173.
  15. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher M.A. (2020a), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  16. Daikh, A.A., Drai, H. and Tounsi, A. (2020b), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 23(6). https://doi.org/10.1177/1099636220909790.
  17. Daikh, A.A., Drai, A., Houari, M.S.A., Eltaher, M.A.J.S. and Structures, C. (2023), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Adv. Nano Res., 36(6), 643-656. http://doi.org/10.12989/anr.2020.36.6.643.
  18. Dau, F., Polit, O. and Touratier, M. (2004), "An efficient C1 finite element with continuity requirements for multilayered/sandwich shell structures", Comput. Struct., 82, 1889-1899. https://doi.org/10.1016/j.compstruc.2003.10.026.
  19. Dau, F., Polit, O. and Touratier, M. (2006), "C1 plate and shell finite elements for geometrically nonlinear analysis of multilayered structures", Comput. Struct., 84, 1264-1274, https://doi.org/10.1016/j.compstruc.2006.01.031.
  20. Farrokhian, A. (2023), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Adv. Nano Res., 35(1), 1-12. http://doi.org/10.12989/anr.2020.35.1.001.
  21. Farrokhian, A. (2022), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Adv. Nano Res., 34(5), 733-742. http://doi.org/10.12989/anr.2020.34.5.733.
  22. Ganapathi, M., Patel, B.P. and Touratier, M. (2004), "Refined finite element for piezoelectric laminated composite beams", Smart Mater. Struct., 13(57). https://doi.org/10.1088/0964-1726/13/4/N04.
  23. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2020), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structure", Arch. Comput. Meth. Eng., 29, 2237-2270. https://doi.org/10.1007/s11831-021-09652-0.
  24. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  25. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213 https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  26. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dynam. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  27. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  28. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019b), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153, 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  29. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019c), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene platelet-reinforced piezo-electric layers", J. Sandw. Struct. Mater., 1099636219839175. https://doi.org/10.1177/1099636219839175.
  30. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  31. Jafarian Arani, A., and Kolahchi, R. (2016), "Buckling analysis of embedded concrete beams armed with carbon nanotubes", Comput. Concr., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
  32. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820
  33. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010
  34. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concr. Constr., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  35. Kolahchi, R., Rabani Bidgoli, M., Beygipoor, G. and Fakhar, M.H. (2013), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 5, 2342-2355. https://doi.org/10.1007/s12206-015-0811-9.
  36. Kolahchi, R., Moniri Bidgoli, A.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014, http://doi.org/10.12989/sem.2015.55.5.1001.
  37. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a). "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  38. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b). "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186, https://doi.org/10.1016/j.compstruct.2016.08.032.
  39. Kolahchi, R. and Moniribidgoli, A.M. (2016). "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8.
  40. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Tech., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  41. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78, 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  42. Laureano, R.W., Mantari, J.L., Yarasca, J., Oktem, A.S., Monge, J. and Zhou, X. (2024a), "Exact solutions for clamped spherical and cylindrical panels via a unified formulation and boundary discontinuous method", Compos. Struct., 346, 118429. https://doi.org/10.1016/j.compstruct.2024.118429.
  43. Laureano, R.W., Mantari, J.L., Yarasca, J., Oktem, A.S., Monge, J. and Zhou, X. (2024b), "A unified formulation and the boundary discontinuous Fourier method for clamped functionally graded shells", Eng. Anal. Bound. Elem., 162, 310-326. https://doi.org/10.1016/j.enganabound.2024.02.004.
  44. Li, X., Liu, Y., Ge, L. and Zhang, Z. (2024), "A large-stroke reluctance-actuated nanopositioner: Compliant compensator for enhanced linearity and precision motion control", IEEE ASME T. Mechatron., 29(4), 2947-2955. https://doi.org/10.1109/TMECH.2024.3405195
  45. Li, J., Wang, Z., Zhang, S., Lin, Y., Wang, L., Sun, C. and Tan, J. (2023), "A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel", J. Adv. Manuf. Technol., 124(11), 4615-4637. https://doi.org/10.1007/s00170-023-10838-y
  46. Lei, Z,. and Zhang, Y., (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Steel Compos. Struct., 28(4), 495-508. https://doi.org/10.12989/scs.2018.28.4.495
  47. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94, 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
  48. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B Eng., 43, 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017.
  49. Mantari, J.L. and Granados, E.V. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B Eng., 56, 126-136, https://doi.org/10.1016/j.compositesb.2013.07.027.
  50. Mantari, J.L. and Granados, E.V. (2015), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B Eng., 15, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.
  51. Mantari, JL., Ramos, IA. and Zenkour, AM. (2016), "A unified formulation for laminated composite and sandwich plates subject to thermal load using various plate theories", Int. J. Appl. Mech., 8. https://doi.org/10.1142/S1758825116500873
  52. Merzouki, T., Houari, M.S.A. and Tornabene, F. (2021), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Math. Mech. Solids, 27. https://doi.org/10.1177/10812865211011759.
  53. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concr., 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361
  54. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concr., 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745
  55. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021a), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118
  56. Motezaker, M., Jamali, M. and Kolahchi, R. (2021b), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625
  57. Pham, Q.H. Hoang, N.T., Tran, T.T. and and Zenkour, A. M. (2024), "Random vibration analysis of functionally graded sandwich plates with different skin layers subjected to double explosive load: Mathematical model with numerical solution proposition", Arch. Civil Mech. Eng., 24, 220. https://doi.org/10.1007/s43452-024-01027-z.
  58. Polit, O. and Touratier, M. (2002), "A multilayered/sandwich triangular finite element applied to linear and non-linear analyses", Compos. Struct., 58, 121-128, https://doi.org/10.1016/S0263-8223(02)00033-8.
  59. Ramos, I.A., Mantari, J.L. and Zenkour, A.M. (2016), "Laminated composite plates subject to thermal load using trigonometrical theory based on Carrera Unified Formulation", Compos. Struct., 143, 324-335. https://doi.org/10.1016/j.compstruct.2016.02.020.
  60. Shahrany, H.D. and and Zenkour, A.M. (2024), "Control of dynamic response of the functionally graded smart sandwich beam coupled variable Kelvin-Voigt-Pasternak's model", Ain Shams Eng. J., 15, 102476. https://doi.org/10.1016/j.asej.2023.102476.
  61. Sobhani Aragh, B. (2017), "Mathematical modelling of the stability of carbon nanotube-reinforced panels", Steel Compos. Struct., 24, 727-740. https://doi.org/10.12989/scs.2017.24.6.727
  62. Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fl., 35(3), 32002. https://doi.org/10.1063/5.0138294
  63. Sun, L., Wang, G. and Zhang, C. (2024), "Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper", J. Intell. Mater. Syst. Struct., 35(6), 661-672. https://doi.org/10.1177/1045389X231222999
  64. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115, http://doi.org/10.12989/scs.2020.37.1.099.
  65. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  66. Van Vinh, P. (2022), "Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter", Physica E, 135, 114951. https://doi.org/10.1016/j.physe.2021.114951
  67. Wang, C., Wang, Z., Zhang, S., Liu, X. and Tan, J. (2023), "Reinforced quantum-behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable-diameter-die-formed metal bent tubes", J. Comput. Des. Eng., 10(3), 1060-1079. https://doi.org/10.1093/jcde/qwad037
  68. Yarasca, J., Mantari, J.L., Monge, J.C. and Hinostroza, M.A. (2024), "A robust five-unknowns higher-order deformation theory optimized via machine learning for functionally graded plates", Mech. Adv. Mater. Struct., 1-16. https://doi.org/10.1080/15376494.2024.2344037.
  69. Yayli, M.O . (2017), "Buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring", Micro Nano Lett., 12, 255-259. https://doi.org/10.1049/mnl.2016.0662
  70. Yang, Y,. Hu, Zh.L and FangLi, X.(2021), "Axisymmetric bending and vibration of circular nanoplates with surface stresses", Thin Wall. Struct, 166, 108086. https://doi.org/10.1016/j.tws.2021.108086
  71. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete beams reinforced with SiO2 nano-particles", Wind Struct., 24, 43-57. http://doi.org/10.12989/was.2017.24.1.043.